Mostrar el registro sencillo del ítem
Effect of the Geometric Profile of Top Ring on the Tribological Characteristics of a Low-Displacement Diesel Engine
dc.contributor.author | Duarte Forero, Jorge | |
dc.contributor.other | Valencia Ochoa, Guillermo | |
dc.contributor.other | Piero Rojas, Jhan | |
dc.date.accessioned | 2022-11-15T21:09:58Z | |
dc.date.available | 2022-11-15T21:09:58Z | |
dc.date.issued | 2020-08-11 | |
dc.date.submitted | 2020-07-08 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/947 | |
dc.description.abstract | The present study aims to analyze the influence of the geometric profile of the compression ring on the tribological properties of the lubricant. Additionally, the influence of the rotation speed and the engine load on the state of the lubricant is evaluated. For this study, a single-cylinder diesel engine is taken as the basis, from which a CAD model of the combustion chamber-piston assembly was made. In addition, the conditions in the cylinder chamber were analyzed when the engine operates at a rotation speed of 3000, 3300, 3600, and 3900 rpm, and a load of 1.5, 3.0, 4.5, and 6.0 N. The calculations were developed using the OpenFOAM® simulation software. The results obtained show that changes in the geometric profile of the ring can contribute to reducing the hydrodynamic friction force by 13% and the friction force caused by roughness by 61%. This implies a decrease in the power lost by friction. In general, the modification of the geometric profile allowed a reduction of 21% in the lost power associated with friction. Additionally, it was observed that the shape of the profile allows to reduce the pressure in the lubricant by 65% and obtain a greater thickness of the lubrication film. On average, an increase of 300 rpm and 1.5 N in the speed and load of the engine causes the friction force and power losses to increase by 45% and 10%. The above results imply that the geometric profile of the compression ring can improve tribological performance in the engine, allowing a reduction in fuel and better lubricant performance. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Lubricants | spa |
dc.title | Effect of the Geometric Profile of Top Ring on the Tribological Characteristics of a Low-Displacement Diesel Engine | spa |
dcterms.bibliographicCitation | 1. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317 | spa |
dcterms.bibliographicCitation | 2. Ochoa, G.V.; Forero, J.D.; Rojas, J.P. A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms. Heliyon 2020, 6, e04136 | spa |
dcterms.bibliographicCitation | 3. Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum power from fluid flow by applying the first and second laws of thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903 | spa |
dcterms.bibliographicCitation | 4. Gurt, A.; Khonsari, M. The Use of Entropy in Modeling the Mechanical Degradation of Grease. Lubricants 2019, 7, 82 | spa |
dcterms.bibliographicCitation | 5. Chong, W.W.F.; Hamdan, S.H.; Wong, K.J.; Yusup, S. Modelling Transitions in Regimes of Lubrication for Rough Surface Contact. Lubricants 2019, 7, 77 | spa |
dcterms.bibliographicCitation | 6. Mejía, A.; Leiva, M.; Rincón, A.; Gonzalez-Quiroga, A.; Duarte-Forero, J. Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends. Case Stud. Therm. Eng. 2020, 100613 | spa |
dcterms.bibliographicCitation | 7. Ramírez, R.; Gutiérrez, A.S.; Eras, J.J.C.; Valencia, K.; Hernández, B.; Forero, J.D. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 2019, 241, 118412 | spa |
dcterms.bibliographicCitation | 8. Ochoa, G.V.; Rojas, J.P.; Forero, J.D. Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267 | spa |
dcterms.bibliographicCitation | 9. Ochoa, G.V.; Gutierrez, J.C.; Forero, J.D. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2. | spa |
dcterms.bibliographicCitation | 10. Blanco, E.E.; Ochoa, G.V.; Forero, J.D. Thermodynamic, Exergy and Environmental Impact Assessment of S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle. Energies 2020, 13, 2259 | spa |
dcterms.bibliographicCitation | 11. Gutierrez, J.C.; Ochoa, G.V.; Duarte-Forero, J. Regenerative Organic Rankine Cycle as Bottoming Cycle of an Industrial Gas Engine: Traditional and Advanced Exergetic Analysis. Appl. Sci. 2020, 10, 4411. | spa |
dcterms.bibliographicCitation | 12. Ochoa, G.V.; Peñaloza, C.A.; Forero, J.D. Combustion and Performance Study of Low-Displacement Compression Ignition Engines Operating with Diesel-Biodiesel Blends. Appl. Sci. 2020, 10, 907 | spa |
dcterms.bibliographicCitation | 13. Tung, S.C.; McMillan, M.L. Automotive tribology overview of current advances and challenges for the future. Tribol. Int. 2004, 37, 517–536. | spa |
dcterms.bibliographicCitation | 14. Nakasa, M. Engine friction overview. In Proceedings of the International Tribology Conference, Yokohama, Japan, 29 October 1995; Volume 1, pp. 5–6. | spa |
dcterms.bibliographicCitation | 15. Furuhama, S.; Sumi, T. A Dynamic Theory of Piston-Ring Lubrication: 3rd Report, Measurement of Oil Film Thickness. Bull. JSME 1961, 4, 744–752 | spa |
dcterms.bibliographicCitation | 16. Furuhama, S.; Sasaki, S. New Device for the Measurement of Piston Frictional Forces in Small Engines. SAE Tech. Pap. 1983, 15, 781–792 | spa |
dcterms.bibliographicCitation | 17. Jeng, Y.R. Theoretical Analysis of Piston-Ring Lubrication Part II—Starved Lubrication and Its Application to a Complete Ring Pack. Tribol. Trans. 1992, 35, 707–714 | spa |
dcterms.bibliographicCitation | 18. Ma, M.T.; Sherrington, I.; Smith, E.H. Analysis of lubrication and friction for a complete piston-ring pack with an improved oil availability model: Part 1: Circumferentially uniform film. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1997, 211, 1–15 | spa |
dcterms.bibliographicCitation | 19. Tian, T. Dynamic behaviours of piston rings and their practical impact. Part 2: Oil transport, friction and wear of ring/liner interface and the effects of piston and ring dynamics. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2002, 216, 229–248 | spa |
dcterms.bibliographicCitation | 20. Akalin, O.; Newaz, G.M. Piston Ring-Cylinder Bore Friction Modeling in Mixed Lubrication Regime: Part I—Analytical Results. J. Tribol. 2001, 123, 211–218 | spa |
dcterms.bibliographicCitation | 21. Mufti, R.A.; Priest, M.; Chittenden, R.J. Analysis of piston assembly friction using the indicated mean effective pressure experimental method to validate mathematical models. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2008, 222, 1441–1457 | spa |
dcterms.bibliographicCitation | 22. Cheng, C.; Kharazmi, A.; Schock, H.; Wineland, R.; Brombolich, L. Three-Dimensional Piston Ring–Cylinder Bore Contact Modeling. J. Eng. Gas Turbines Power 2015, 137, 111505 | spa |
dcterms.bibliographicCitation | 23. Kirner, C.; Halbhuber, J.; Uhlig, B.; Oliva, A.; Graf, S.; Wachtmeister, G. Experimental and simulative research advances in the piston assembly of an internal combustion engine. Tribol. Int. 2016, 99, 159–168. | spa |
dcterms.bibliographicCitation | 24. Guo, Z.-W.; Yuan, C.-Q.; Bai, X.-Q.; Yan, X.-P. Experimental Study on Wear Performance and Oil Film Characteristics of Surface Textured Cylinder Liner in Marine Diesel Engine. Chin. J. Mech. Eng. 2018, 31, 52 | spa |
dcterms.bibliographicCitation | 25. Howell-Smith, S.; Rahnejat, H.; King, P.D.; Dowson, D. Reducing in-cylinder parasitic losses through surface modification and coating. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 391–402. | spa |
dcterms.bibliographicCitation | 26. Chaudhari, T.; Sutaria, B. Investigation of friction characteristics in segmented piston ring liner assembly of IC engine. Perspect. Sci. 2016, 8, 599–602 | spa |
dcterms.bibliographicCitation | 27. Gopi, E.; Saleem, M.; Chandan, S.; Nema, A. Thermal and static analysis of engine piston rings. Int. J. Ambient Energy 2019, 1–5. | spa |
dcterms.bibliographicCitation | 28. Kashyap, A.; Harsha, A.P.; Barshilia, H.C.; Bonu, V.; Kumar, V.P.; Singh, R.K. Study of Tribological Properties of Multilayer Ti/TiN Coating Containing Stress Absorbing Layers. J. Tribol. 2020, 142, 111401 | spa |
dcterms.bibliographicCitation | 29. Ali, M.K.A.; Xianjun, H.; Turkson, R.F.; Ezzat, M. An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2016, 230, 329–349 | spa |
dcterms.bibliographicCitation | 30. Turnbull, R.; Dolatabadi, N.; Rahmani, R.; Rahnejat, H. An assessment of gas power leakage and frictional losses from the top compression ring of internal combustion engines. Tribol. Int. 2020, 142, 105991 | spa |
dcterms.bibliographicCitation | 31. Ali, M.K.A.; Xianjun, H.; Mai, L.; Qingping, C.; Turkson, R.F.; Bicheng, C. Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribol. Int. 2016, 103, 540–554 | spa |
dcterms.bibliographicCitation | 32. Söderfjäll, M.; Isaksson, P.; Spencer, A.; Almqvist, A.; Larsson, R. The effect of three-dimensional deformations of a cylinder liner on the tribological performance of a piston ring-cylinder liner system. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014, 228, 1080–1087 | spa |
dcterms.bibliographicCitation | 33. Profito, F.J.; Tomanik, E.; Zachariadis, D.C. Effect of cylinder liner wear on the mixed lubrication regime of TLOCRs. Tribol. Int. 2016, 93, 723–732 | spa |
dcterms.bibliographicCitation | 34. Mezghani, S.; Demirci, I.; Yousfi, M.; El Mansori, M. Mutual influence of crosshatch angle and superficial roughness of honed surfaces on friction in ring-pack tribo-system. Tribol. Int. 2013, 66, 54–59 | spa |
dcterms.bibliographicCitation | 35. Zavos, A.B.; Nikolakopoulos, P.G. Simulation of piston ring tribology with surface texturing for internal combustion engines. Lubr. Sci. 2015, 27, 151–176 | spa |
dcterms.bibliographicCitation | 36. Nevshupa, R.; Conte, M.; Del Campo, A.; Roman, E. Analysis of tribochemical decomposition of two imidazolium ionic liquids on Ti-6Al-4V through Mechanically Stimulated Gas Emission Spectrometry. Tribol. Int. 2016, 102, 19–27 | spa |
dcterms.bibliographicCitation | 37. Morris, N.; Rahmani, R.; Rahnejat, H.; King, P.D.; Fitzsimons, B. Tribology of piston compression ring conjunction under transient thermal mixed regime of lubrication. Tribol. Int. 2013, 59, 248–258. | spa |
dcterms.bibliographicCitation | 38. Knauder, C.; Allmaier, H.; Sander, D.E.; Sams, T. Investigations of the Friction Losses of Different Engine Concepts: Part 3: Friction Reduction Potentials and Risk Assessment at the Sub-Assembly Level. Lubricants 2020, 8, 39 | spa |
dcterms.bibliographicCitation | 39. Knauder, C.; Allmaier, H.; Sander, D.E.; Sams, T. Investigations of the Friction Losses of Different Engine Concepts. Part 2: Sub-Assembly Resolved Friction Loss Comparison of Three Engines. Lubricants 2019, 7, 105. | spa |
dcterms.bibliographicCitation | 40. Pusterhofer, M.; Summer, F.; Wuketich, D.; Grün, F. Development of a Model Test System for a Piston Ring/Cylinder Liner-Contact with Focus on Near-to-Application Seizure Behaviour. Lubricants 2019, 7, 104 | spa |
dcterms.bibliographicCitation | 41. Knauder, C.; Allmaier, H.; Sander, D.E.; Sams, T. Investigations of the Friction Losses of Different Engine Concepts. Part 1: A Combined Approach for Applying Subassembly-Resolved Friction Loss Analysis on a Modern Passenger-Car Diesel Engine. Lubricants 2019, 7, 39 | spa |
dcterms.bibliographicCitation | 42. Rozario, A.; Baumann, C.; Shah, R. The Influence of a Piston Ring Coating on the Wear and Friction Generated during Linear Oscillation. Lubricants 2019, 7, 8 | spa |
dcterms.bibliographicCitation | 43. Oliva, A.; Held, S.; Herdt, A.; Wachtmeister, G. Numerical Simulation of the Gas Flow through the Piston Ring Pack of an Internal Combustion Engine. SAE Tech. Pap. 2015 | spa |
dcterms.bibliographicCitation | 44. Oliva, A.; Held, S. Numerical multiphase simulation and validation of the flow in the piston ring pack of an internal combustion engine. Tribol. Int. 2016, 101, 98–109 | spa |
dcterms.bibliographicCitation | 45. Ferziger, J.H.; Peric, M.; Leonard, A. Computational Methods for Fluid Dynamics. Phys. Today 1997, 50, 80–84 | spa |
dcterms.bibliographicCitation | 46. Ishii, M.; Hibiki, T. Thermo-Fluid Dynamics of Two-Phase Flow; Springer: New York, NY, USA, 2011 | spa |
dcterms.bibliographicCitation | 47. Lejsek, D.; Scherrer, D.; Kufferath, A.; Kulzer, A. Combustion process analysis. MTZ Worldw. 2006, 67, 6–9. | spa |
dcterms.bibliographicCitation | 48. How, H.G.; Masjuki, H.H.; Kalam, M.A.; Teoh, Y.H. Influence of injection timing and split injection strategies on performance, emissions, and combustion characteristics of diesel engine fueled with biodiesel blended fuels. Fuel 2018, 213, 106–114 | spa |
dcterms.bibliographicCitation | 49. Perera, M.S.M.; Theodossiades, S.; Rahnejat, H. Elasto-multi-body dynamics of internal combustion engines with tribological conjunctions. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2010, 224, 261–277. | spa |
dcterms.bibliographicCitation | 50. Consuegra, F.; Bula, A.; Guillín, W.; Sánchez, J.; Forero, J.D. Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines. Energies 2019, 12, 1437 | spa |
dcterms.bibliographicCitation | 51. Lyubarskyy, P.; Bartel, D. 2D CFD-model of the piston assembly in a diesel engine for the analysis of piston ring dynamics, mass transport and friction. Tribol. Int. 2016, 104, 352–368 | spa |
dcterms.bibliographicCitation | 52. Dowson, D.; Higginson, G.R. A Numerical Solution to the Elasto-Hydrodynamic Problem. J. Mech. Eng. Sci. 1959, 1, 6–15. | spa |
dcterms.bibliographicCitation | 53. Yang, P.; Cui, J.; Jin, Z.M.; Dowson, D. Transient elastohydrodynamic analysis of elliptical contacts. Part 2: Thermal and Newtonian lubricant solution. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2005, 219, 187–200 | spa |
dcterms.bibliographicCitation | 54. Houpert, L. New Results of Traction Force Calculations in Elastohydrodynamic Contacts. J. Tribol. 1985, 107, 241–245 | spa |
dcterms.bibliographicCitation | 55. Roelands, C.J.A.; Winer, W.O.; Wright, W.A. Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils (Dr In dissertation at Technical University of Delft, 1966). J. Lubr. Technol. 1971, 93, 209–210 | spa |
dcterms.bibliographicCitation | 56. Greenwood, J.A.; Tripp, J.H. The contact of two nominally flat rough surfaces. Proc. Inst. Mech. Eng. 1970, 185, 625–633 | spa |
dcterms.bibliographicCitation | 57. Rahmani, R.; Theodossiades, S.; Rahnejat, H.; Fitzsimons, B. Transient elastohydrodynamic lubrication of rough new or worn piston compression ring conjunction with an out-of-round cylinder bore. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 284–305 | spa |
dcterms.bibliographicCitation | 58. Baker, C.; Theodossiades, S.; Rahmani, R.; Rahnejat, H.; Fitzsimons, B. On the Transient Three-Dimensional Tribodynamics of Internal Combustion Engine Top Compression Ring. J. Eng. Gas Turbines Power 2017, 139, 062801 | spa |
dcterms.bibliographicCitation | 59. Namazian, M.; Heywood, J.B. Flow in the Piston-Cylinder-Ring Crevices of a Spark-Ignition Engine: Effect on Hydrocarbon Emissions, Efficiency and Power. SAE Tech. Pap. 1982 | spa |
dcterms.bibliographicCitation | 60. Lang, T.E. Vibration of thin circular rings, Part 1. In Jet Propuls. Lab. Calif. Inst. Technol. Pasadena CA Rep.; 1962. Available online: https://ntrs.nasa.gov/search.jsp?R=19630006566 (accessed on 1 July 2020) | spa |
dcterms.bibliographicCitation | 61. Theaker, M.; Rahmani, R.; Rahnejat, H. Prediction of Ring-Bore Conformance and Contact Condition and Experimental Validation. ASME 2012 Intern. Combust. Engine Div. Spring Tech. Conf. 2012, 44663, 885–892. | spa |
dcterms.bibliographicCitation | 62. Sutherland, W. LII. The viscosity of gases and molecular force, London, Edinburgh, Dublin Philos. Mag. J. Sci. 1893, 36, 507–531 | spa |
dcterms.bibliographicCitation | 63. Mufti, R.A.; Priest, M.; Chittenden, R.J. Experimental and Theoretical Study of Instantaneous Piston Assembly Friction in a Gasoline Engine. Int. Jt. Tribol. Conf. 2004, 41812, 907–921 | spa |
dcterms.bibliographicCitation | 64. Guzzomi, A.L.; Hesterman, D.C.; Stone, B.J. The effect of piston friction on engine block dynamics. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2007, 221, 277–289. | spa |
dcterms.bibliographicCitation | 65. Zavos, A.; Nikolakopoulos, P.G. Tribology of new thin compression ring of fired engine under controlled conditions—A combined experimental and numerical study. Tribol. Int. 2018, 128, 214–230 | spa |
dcterms.bibliographicCitation | 66. Koch, F.; Decker, P.; Gülpen, R.; Quadflieg, F.-J.; Loeprecht, M. Cylinder Liner Deformation Analysis—Measurements and Calculations. SAE Tech. Pap. 1998 | spa |
dcterms.bibliographicCitation | 67. Gore, M.; Theaker, M.; Howell-Smith, S.; Rahnejat, H.; King, P.D. Direct measurement of piston friction of internal-combustion engines using the floating-liner principle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 344–354 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | : diesel engine; friction; hydrodynamic; lubrication; piston ring; power losses | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |