Mostrar el registro sencillo del ítem

dc.contributor.authorDuarte Forero, Jorge
dc.contributor.otherValencia Ochoa, Guillermo
dc.contributor.otherPiero Rojas, Jhan
dc.date.accessioned2022-11-15T21:09:58Z
dc.date.available2022-11-15T21:09:58Z
dc.date.issued2020-08-11
dc.date.submitted2020-07-08
dc.identifier.urihttps://hdl.handle.net/20.500.12834/947
dc.description.abstractThe present study aims to analyze the influence of the geometric profile of the compression ring on the tribological properties of the lubricant. Additionally, the influence of the rotation speed and the engine load on the state of the lubricant is evaluated. For this study, a single-cylinder diesel engine is taken as the basis, from which a CAD model of the combustion chamber-piston assembly was made. In addition, the conditions in the cylinder chamber were analyzed when the engine operates at a rotation speed of 3000, 3300, 3600, and 3900 rpm, and a load of 1.5, 3.0, 4.5, and 6.0 N. The calculations were developed using the OpenFOAM® simulation software. The results obtained show that changes in the geometric profile of the ring can contribute to reducing the hydrodynamic friction force by 13% and the friction force caused by roughness by 61%. This implies a decrease in the power lost by friction. In general, the modification of the geometric profile allowed a reduction of 21% in the lost power associated with friction. Additionally, it was observed that the shape of the profile allows to reduce the pressure in the lubricant by 65% and obtain a greater thickness of the lubrication film. On average, an increase of 300 rpm and 1.5 N in the speed and load of the engine causes the friction force and power losses to increase by 45% and 10%. The above results imply that the geometric profile of the compression ring can improve tribological performance in the engine, allowing a reduction in fuel and better lubricant performance.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceLubricantsspa
dc.titleEffect of the Geometric Profile of Top Ring on the Tribological Characteristics of a Low-Displacement Diesel Enginespa
dcterms.bibliographicCitation1. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317spa
dcterms.bibliographicCitation2. Ochoa, G.V.; Forero, J.D.; Rojas, J.P. A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms. Heliyon 2020, 6, e04136spa
dcterms.bibliographicCitation3. Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum power from fluid flow by applying the first and second laws of thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903spa
dcterms.bibliographicCitation4. Gurt, A.; Khonsari, M. The Use of Entropy in Modeling the Mechanical Degradation of Grease. Lubricants 2019, 7, 82spa
dcterms.bibliographicCitation5. Chong, W.W.F.; Hamdan, S.H.; Wong, K.J.; Yusup, S. Modelling Transitions in Regimes of Lubrication for Rough Surface Contact. Lubricants 2019, 7, 77spa
dcterms.bibliographicCitation6. Mejía, A.; Leiva, M.; Rincón, A.; Gonzalez-Quiroga, A.; Duarte-Forero, J. Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends. Case Stud. Therm. Eng. 2020, 100613spa
dcterms.bibliographicCitation7. Ramírez, R.; Gutiérrez, A.S.; Eras, J.J.C.; Valencia, K.; Hernández, B.; Forero, J.D. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 2019, 241, 118412spa
dcterms.bibliographicCitation8. Ochoa, G.V.; Rojas, J.P.; Forero, J.D. Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267spa
dcterms.bibliographicCitation9. Ochoa, G.V.; Gutierrez, J.C.; Forero, J.D. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2.spa
dcterms.bibliographicCitation10. Blanco, E.E.; Ochoa, G.V.; Forero, J.D. Thermodynamic, Exergy and Environmental Impact Assessment of S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle. Energies 2020, 13, 2259spa
dcterms.bibliographicCitation11. Gutierrez, J.C.; Ochoa, G.V.; Duarte-Forero, J. Regenerative Organic Rankine Cycle as Bottoming Cycle of an Industrial Gas Engine: Traditional and Advanced Exergetic Analysis. Appl. Sci. 2020, 10, 4411.spa
dcterms.bibliographicCitation12. Ochoa, G.V.; Peñaloza, C.A.; Forero, J.D. Combustion and Performance Study of Low-Displacement Compression Ignition Engines Operating with Diesel-Biodiesel Blends. Appl. Sci. 2020, 10, 907spa
dcterms.bibliographicCitation13. Tung, S.C.; McMillan, M.L. Automotive tribology overview of current advances and challenges for the future. Tribol. Int. 2004, 37, 517–536.spa
dcterms.bibliographicCitation14. Nakasa, M. Engine friction overview. In Proceedings of the International Tribology Conference, Yokohama, Japan, 29 October 1995; Volume 1, pp. 5–6.spa
dcterms.bibliographicCitation15. Furuhama, S.; Sumi, T. A Dynamic Theory of Piston-Ring Lubrication: 3rd Report, Measurement of Oil Film Thickness. Bull. JSME 1961, 4, 744–752spa
dcterms.bibliographicCitation16. Furuhama, S.; Sasaki, S. New Device for the Measurement of Piston Frictional Forces in Small Engines. SAE Tech. Pap. 1983, 15, 781–792spa
dcterms.bibliographicCitation17. Jeng, Y.R. Theoretical Analysis of Piston-Ring Lubrication Part II—Starved Lubrication and Its Application to a Complete Ring Pack. Tribol. Trans. 1992, 35, 707–714spa
dcterms.bibliographicCitation18. Ma, M.T.; Sherrington, I.; Smith, E.H. Analysis of lubrication and friction for a complete piston-ring pack with an improved oil availability model: Part 1: Circumferentially uniform film. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1997, 211, 1–15spa
dcterms.bibliographicCitation19. Tian, T. Dynamic behaviours of piston rings and their practical impact. Part 2: Oil transport, friction and wear of ring/liner interface and the effects of piston and ring dynamics. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2002, 216, 229–248spa
dcterms.bibliographicCitation20. Akalin, O.; Newaz, G.M. Piston Ring-Cylinder Bore Friction Modeling in Mixed Lubrication Regime: Part I—Analytical Results. J. Tribol. 2001, 123, 211–218spa
dcterms.bibliographicCitation21. Mufti, R.A.; Priest, M.; Chittenden, R.J. Analysis of piston assembly friction using the indicated mean effective pressure experimental method to validate mathematical models. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2008, 222, 1441–1457spa
dcterms.bibliographicCitation22. Cheng, C.; Kharazmi, A.; Schock, H.; Wineland, R.; Brombolich, L. Three-Dimensional Piston Ring–Cylinder Bore Contact Modeling. J. Eng. Gas Turbines Power 2015, 137, 111505spa
dcterms.bibliographicCitation23. Kirner, C.; Halbhuber, J.; Uhlig, B.; Oliva, A.; Graf, S.; Wachtmeister, G. Experimental and simulative research advances in the piston assembly of an internal combustion engine. Tribol. Int. 2016, 99, 159–168.spa
dcterms.bibliographicCitation24. Guo, Z.-W.; Yuan, C.-Q.; Bai, X.-Q.; Yan, X.-P. Experimental Study on Wear Performance and Oil Film Characteristics of Surface Textured Cylinder Liner in Marine Diesel Engine. Chin. J. Mech. Eng. 2018, 31, 52spa
dcterms.bibliographicCitation25. Howell-Smith, S.; Rahnejat, H.; King, P.D.; Dowson, D. Reducing in-cylinder parasitic losses through surface modification and coating. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 391–402.spa
dcterms.bibliographicCitation26. Chaudhari, T.; Sutaria, B. Investigation of friction characteristics in segmented piston ring liner assembly of IC engine. Perspect. Sci. 2016, 8, 599–602spa
dcterms.bibliographicCitation27. Gopi, E.; Saleem, M.; Chandan, S.; Nema, A. Thermal and static analysis of engine piston rings. Int. J. Ambient Energy 2019, 1–5.spa
dcterms.bibliographicCitation28. Kashyap, A.; Harsha, A.P.; Barshilia, H.C.; Bonu, V.; Kumar, V.P.; Singh, R.K. Study of Tribological Properties of Multilayer Ti/TiN Coating Containing Stress Absorbing Layers. J. Tribol. 2020, 142, 111401spa
dcterms.bibliographicCitation29. Ali, M.K.A.; Xianjun, H.; Turkson, R.F.; Ezzat, M. An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2016, 230, 329–349spa
dcterms.bibliographicCitation30. Turnbull, R.; Dolatabadi, N.; Rahmani, R.; Rahnejat, H. An assessment of gas power leakage and frictional losses from the top compression ring of internal combustion engines. Tribol. Int. 2020, 142, 105991spa
dcterms.bibliographicCitation31. Ali, M.K.A.; Xianjun, H.; Mai, L.; Qingping, C.; Turkson, R.F.; Bicheng, C. Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribol. Int. 2016, 103, 540–554spa
dcterms.bibliographicCitation32. Söderfjäll, M.; Isaksson, P.; Spencer, A.; Almqvist, A.; Larsson, R. The effect of three-dimensional deformations of a cylinder liner on the tribological performance of a piston ring-cylinder liner system. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014, 228, 1080–1087spa
dcterms.bibliographicCitation33. Profito, F.J.; Tomanik, E.; Zachariadis, D.C. Effect of cylinder liner wear on the mixed lubrication regime of TLOCRs. Tribol. Int. 2016, 93, 723–732spa
dcterms.bibliographicCitation34. Mezghani, S.; Demirci, I.; Yousfi, M.; El Mansori, M. Mutual influence of crosshatch angle and superficial roughness of honed surfaces on friction in ring-pack tribo-system. Tribol. Int. 2013, 66, 54–59spa
dcterms.bibliographicCitation35. Zavos, A.B.; Nikolakopoulos, P.G. Simulation of piston ring tribology with surface texturing for internal combustion engines. Lubr. Sci. 2015, 27, 151–176spa
dcterms.bibliographicCitation36. Nevshupa, R.; Conte, M.; Del Campo, A.; Roman, E. Analysis of tribochemical decomposition of two imidazolium ionic liquids on Ti-6Al-4V through Mechanically Stimulated Gas Emission Spectrometry. Tribol. Int. 2016, 102, 19–27spa
dcterms.bibliographicCitation37. Morris, N.; Rahmani, R.; Rahnejat, H.; King, P.D.; Fitzsimons, B. Tribology of piston compression ring conjunction under transient thermal mixed regime of lubrication. Tribol. Int. 2013, 59, 248–258.spa
dcterms.bibliographicCitation38. Knauder, C.; Allmaier, H.; Sander, D.E.; Sams, T. Investigations of the Friction Losses of Different Engine Concepts: Part 3: Friction Reduction Potentials and Risk Assessment at the Sub-Assembly Level. Lubricants 2020, 8, 39spa
dcterms.bibliographicCitation39. Knauder, C.; Allmaier, H.; Sander, D.E.; Sams, T. Investigations of the Friction Losses of Different Engine Concepts. Part 2: Sub-Assembly Resolved Friction Loss Comparison of Three Engines. Lubricants 2019, 7, 105.spa
dcterms.bibliographicCitation40. Pusterhofer, M.; Summer, F.; Wuketich, D.; Grün, F. Development of a Model Test System for a Piston Ring/Cylinder Liner-Contact with Focus on Near-to-Application Seizure Behaviour. Lubricants 2019, 7, 104spa
dcterms.bibliographicCitation41. Knauder, C.; Allmaier, H.; Sander, D.E.; Sams, T. Investigations of the Friction Losses of Different Engine Concepts. Part 1: A Combined Approach for Applying Subassembly-Resolved Friction Loss Analysis on a Modern Passenger-Car Diesel Engine. Lubricants 2019, 7, 39spa
dcterms.bibliographicCitation42. Rozario, A.; Baumann, C.; Shah, R. The Influence of a Piston Ring Coating on the Wear and Friction Generated during Linear Oscillation. Lubricants 2019, 7, 8spa
dcterms.bibliographicCitation43. Oliva, A.; Held, S.; Herdt, A.; Wachtmeister, G. Numerical Simulation of the Gas Flow through the Piston Ring Pack of an Internal Combustion Engine. SAE Tech. Pap. 2015spa
dcterms.bibliographicCitation44. Oliva, A.; Held, S. Numerical multiphase simulation and validation of the flow in the piston ring pack of an internal combustion engine. Tribol. Int. 2016, 101, 98–109spa
dcterms.bibliographicCitation45. Ferziger, J.H.; Peric, M.; Leonard, A. Computational Methods for Fluid Dynamics. Phys. Today 1997, 50, 80–84spa
dcterms.bibliographicCitation46. Ishii, M.; Hibiki, T. Thermo-Fluid Dynamics of Two-Phase Flow; Springer: New York, NY, USA, 2011spa
dcterms.bibliographicCitation47. Lejsek, D.; Scherrer, D.; Kufferath, A.; Kulzer, A. Combustion process analysis. MTZ Worldw. 2006, 67, 6–9.spa
dcterms.bibliographicCitation48. How, H.G.; Masjuki, H.H.; Kalam, M.A.; Teoh, Y.H. Influence of injection timing and split injection strategies on performance, emissions, and combustion characteristics of diesel engine fueled with biodiesel blended fuels. Fuel 2018, 213, 106–114spa
dcterms.bibliographicCitation49. Perera, M.S.M.; Theodossiades, S.; Rahnejat, H. Elasto-multi-body dynamics of internal combustion engines with tribological conjunctions. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2010, 224, 261–277.spa
dcterms.bibliographicCitation50. Consuegra, F.; Bula, A.; Guillín, W.; Sánchez, J.; Forero, J.D. Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines. Energies 2019, 12, 1437spa
dcterms.bibliographicCitation51. Lyubarskyy, P.; Bartel, D. 2D CFD-model of the piston assembly in a diesel engine for the analysis of piston ring dynamics, mass transport and friction. Tribol. Int. 2016, 104, 352–368spa
dcterms.bibliographicCitation52. Dowson, D.; Higginson, G.R. A Numerical Solution to the Elasto-Hydrodynamic Problem. J. Mech. Eng. Sci. 1959, 1, 6–15.spa
dcterms.bibliographicCitation53. Yang, P.; Cui, J.; Jin, Z.M.; Dowson, D. Transient elastohydrodynamic analysis of elliptical contacts. Part 2: Thermal and Newtonian lubricant solution. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2005, 219, 187–200spa
dcterms.bibliographicCitation54. Houpert, L. New Results of Traction Force Calculations in Elastohydrodynamic Contacts. J. Tribol. 1985, 107, 241–245spa
dcterms.bibliographicCitation55. Roelands, C.J.A.; Winer, W.O.; Wright, W.A. Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils (Dr In dissertation at Technical University of Delft, 1966). J. Lubr. Technol. 1971, 93, 209–210spa
dcterms.bibliographicCitation56. Greenwood, J.A.; Tripp, J.H. The contact of two nominally flat rough surfaces. Proc. Inst. Mech. Eng. 1970, 185, 625–633spa
dcterms.bibliographicCitation57. Rahmani, R.; Theodossiades, S.; Rahnejat, H.; Fitzsimons, B. Transient elastohydrodynamic lubrication of rough new or worn piston compression ring conjunction with an out-of-round cylinder bore. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 284–305spa
dcterms.bibliographicCitation58. Baker, C.; Theodossiades, S.; Rahmani, R.; Rahnejat, H.; Fitzsimons, B. On the Transient Three-Dimensional Tribodynamics of Internal Combustion Engine Top Compression Ring. J. Eng. Gas Turbines Power 2017, 139, 062801spa
dcterms.bibliographicCitation59. Namazian, M.; Heywood, J.B. Flow in the Piston-Cylinder-Ring Crevices of a Spark-Ignition Engine: Effect on Hydrocarbon Emissions, Efficiency and Power. SAE Tech. Pap. 1982spa
dcterms.bibliographicCitation60. Lang, T.E. Vibration of thin circular rings, Part 1. In Jet Propuls. Lab. Calif. Inst. Technol. Pasadena CA Rep.; 1962. Available online: https://ntrs.nasa.gov/search.jsp?R=19630006566 (accessed on 1 July 2020)spa
dcterms.bibliographicCitation61. Theaker, M.; Rahmani, R.; Rahnejat, H. Prediction of Ring-Bore Conformance and Contact Condition and Experimental Validation. ASME 2012 Intern. Combust. Engine Div. Spring Tech. Conf. 2012, 44663, 885–892.spa
dcterms.bibliographicCitation62. Sutherland, W. LII. The viscosity of gases and molecular force, London, Edinburgh, Dublin Philos. Mag. J. Sci. 1893, 36, 507–531spa
dcterms.bibliographicCitation63. Mufti, R.A.; Priest, M.; Chittenden, R.J. Experimental and Theoretical Study of Instantaneous Piston Assembly Friction in a Gasoline Engine. Int. Jt. Tribol. Conf. 2004, 41812, 907–921spa
dcterms.bibliographicCitation64. Guzzomi, A.L.; Hesterman, D.C.; Stone, B.J. The effect of piston friction on engine block dynamics. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2007, 221, 277–289.spa
dcterms.bibliographicCitation65. Zavos, A.; Nikolakopoulos, P.G. Tribology of new thin compression ring of fired engine under controlled conditions—A combined experimental and numerical study. Tribol. Int. 2018, 128, 214–230spa
dcterms.bibliographicCitation66. Koch, F.; Decker, P.; Gülpen, R.; Quadflieg, F.-J.; Loeprecht, M. Cylinder Liner Deformation Analysis—Measurements and Calculations. SAE Tech. Pap. 1998spa
dcterms.bibliographicCitation67. Gore, M.; Theaker, M.; Howell-Smith, S.; Rahnejat, H.; King, P.D. Direct measurement of piston friction of internal-combustion engines using the floating-liner principle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 344–354spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywords: diesel engine; friction; hydrodynamic; lubrication; piston ring; power lossesspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por