Mostrar el registro sencillo del ítem

dc.contributor.authorMejía, A.
dc.contributor.otherLeiva, M.
dc.contributor.otherRincon-Montenegro, A.
dc.contributor.otherGonzalez-Quiroga, A.
dc.contributor.otherDuarte- Forero, J.
dc.date.accessioned2022-11-15T21:24:51Z
dc.date.available2022-11-15T21:24:51Z
dc.date.issued2020-02-26
dc.date.submitted2019-12-22
dc.identifier.urihttps://hdl.handle.net/20.500.12834/998
dc.description.abstractDiesel engines applications cover a broad spectrum, ranging from vehicles that transport passengers and move goods to specialized vehicles and equipment used in the construction and agriculture industries. However, diesel engines are a significant source of pollutant emissions that contribute to poor air quality, negative human health impacts, and climate change. This experimental case study develops emission maps based on statistical models for a single-cylinder, fourstroke, air-cooled diesel engine as a function of torque and engine speed. The tested fuels were 100% diesel (B0), and blends with 5% (B5) and 10% (B10) biodiesel originating from African oil palm (Elaeis guineensis). The study explores the individual contributions of NO and NO2 to NOx and discusses the correlation between CO and O2 emission maps. The statistical models of CO, CO2, and O2 feature R2 adjusted values greater than 0.8, while the models of NO and NO2 show R2 adjusted values of around 0.6. The apparent discrepancies in CO emission trends among previous studies are explained. The emission maps developed here are a practical alternative to predictive models and can assist in engine calibration and aftertreatment optimization while saving time and costs.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceElsevier Ltdspa
dc.titleExperimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blendsspa
dcterms.bibliographicCitation[1] A.T. Hoang, Waste heat recovery from diesel engines based on Organic Rankine Cycle, Appl. Energy 231 (2018) 138–166, https://doi.org/10.1016/j. apenergy.2018.09.022.spa
dcterms.bibliographicCitation[2] M. Tabatabaei, M. Aghbashlo, M. Dehhaghi, H.K.S. Panahi, A. Mollahosseini, M. Hosseini, M.M. Soufiyan, Reactor technologies for biodiesel production and processing: a review, Prog. Energy Combust. Sci. 74 (2019) 239–303, https://doi.org/10.1016/j.pecs.2019.06.001.spa
dcterms.bibliographicCitation[3] C. Ericson, B. Westerberg, M. Andersson, R. Egnell, Modelling diesel engine combustion and NOx formation for model based control and simulation of engine and exhaust aftertreatment systems. https://doi.org/10.4271/2006-01-0687, 2006.spa
dcterms.bibliographicCitation[4] X. Tauzia, A. Maiboom, H. Karaky, Semi-physical models to assess the influence of CI engine calibration parameters on NOx and soot emissions, Appl. Energy 208 (2017) 1505–1518, https://doi.org/10.1016/j.apenergy.2017.08.232.spa
dcterms.bibliographicCitation[5] B. Rajesh Kumar, S. Saravanan, K. Rajaram, Combined effect of oxygenates and injection timing for low emissions and high performance in a diesel engine using multi-response optimisation, Alexandria Eng. J. 58 (2019) 625–636, https://doi.org/10.1016/j.aej.2019.03.009.spa
dcterms.bibliographicCitation[6] B.P. BP, Energy outlook 2019 edition. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bpenergy- outlook-2019.pdf, 2019.spa
dcterms.bibliographicCitation[7] N.S. Ekaab, N.H. Hamza, M.T. Chaichan, Performance and emitted pollutants assessment of diesel engine fuelled with biokerosene, Case Stud. Therm. Eng. 13 (2019) 100381, https://doi.org/10.1016/j.csite.2018.100381.spa
dcterms.bibliographicCitation[8] M.T. Chaichan, A.A.H. Kadhum, A.A. Al-Amiery, Novel technique for enhancement of diesel fuel: impact of aqueous alumina nano-fluid on engine’s performance and emissions, Case Stud. Therm. Eng. 10 (2017) 611–620, https://doi.org/10.1016/j.csite.2017.11.006.spa
dcterms.bibliographicCitation[9] A.K. Yadav, M.E. Khan, A.M. Dubey, A. Pal, Performance and emission characteristics of a transportation diesel engine operated with non-edible vegetable oils biodiesel, Case Stud. Therm. Eng. 8 (2016) 236–244, https://doi.org/10.1016/j.csite.2016.08.001.spa
dcterms.bibliographicCitation[10] A.T. Hoang, V.V. Pham, A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil, Energy Sources, Part A Recovery, Util. Environ. Eff. 41 (2019) 611–625.spa
dcterms.bibliographicCitation[11] M.A. Ghadikolaei, L. Wei, C.S. Cheung, K.-F. Yung, Effects of engine load and biodiesel content on performance and regulated and unregulated emissions of a diesel engine using contour-plot map, Sci. Total Environ. 658 (2019) 1117–1130, https://doi.org/10.1016/j.scitotenv.2018.12.270.spa
dcterms.bibliographicCitation[12] R. Rezaei, F. Dinkelacker, B. Tilch, T. Delebinski, M. Brauer, Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines, Int. J. Engine Res. 17 (2015) 846–856, https://doi.org/10.1177/1468087415619302.spa
dcterms.bibliographicCitation[13] J.A. V�elez Godi~no, F.J. Jim�enez-Espadafor Aguilar, M.T. García, Simulation of HCCI combustion in air-cooled off-road engines fuelled with diesel and biodiesel, J. Energy Inst. 91 (2018) 549–562, https://doi.org/10.1016/j.joei.2017.04.002.spa
dcterms.bibliographicCitation[14] S. Roy, R. Banerjee, P.K. Bose, Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network, Appl. Energy 119 (2014) 330–340, https://doi.org/10.1016/j.apenergy.2014.01.044.spa
dcterms.bibliographicCitation[15] K. Cheikh, A. Sary, L. Khaled, L. Abdelkrim, T. Mohand, Experimental assessment of performance and emissions maps for biodiesel fueled compression ignition engine, Appl. Energy 161 (2016) 320–329, https://doi.org/10.1016/j.apenergy.2015.10.042.spa
dcterms.bibliographicCitation[16] S. Imran, D.R. Emberson, D.S. Wen, A. Diez, R.J. Crookes, T. Korakianitis, Performance and specific emissions contours of a diesel and RME fueled compressionignition engine throughout its operating speed and power range, Appl. Energy 111 (2013) 771–777, https://doi.org/10.1016/j.apenergy.2013.04.040.spa
dcterms.bibliographicCitation[17] H. Xu, B. Yin, S. Liu, H. Jia, Performance optimization of diesel engine fueled with diesel–jatropha curcas biodiesel blend using response surface methodology, J. Mech. Sci. Technol. 31 (2017) 4051–4059, https://doi.org/10.1007/s12206-017-0753-5.spa
dcterms.bibliographicCitation[18] A.M. Taborda, R.A. Varella, T.L. Farias, G.O. Duarte, Evaluation of technological solutions for compliance of environmental legislation in light-duty passenger: a numerical and experimental approach, Transport. Res. Transport Environ. 70 (2019) 135–146, https://doi.org/10.1016/j.trd.2019.04.004.spa
dcterms.bibliographicCitation[19] A.K. Yadav, A. Pal, A.M. Dubey, Experimental studies on utilization of prunus armeniaca L. (Wild apricot) biodiesel as an alternative fuel for CI engine, Waste and Biomass Valorization 9 (2018), https://doi.org/10.1007/s12649-017-9935-8, 1961–1969.spa
dcterms.bibliographicCitation[20] V. Hariram, J.G. John, S. Seralathan, T. Micha Premkumar, Comparative analysis of combustion, performance and emission phenomenon of a CI engine fuelled with algal and cotton seed biodiesel, Int. J. Ambient Energy (2018) 1–12, https://doi.org/10.1080/01430750.2018.1562977.spa
dcterms.bibliographicCitation[21] S. Sundaram, V. Ramasamy, N. Natarajan, J. Sivakumar, Investigation on performance and emission characteristics of cardanol–diesel blends in a single cylinder DI diesel engine, Energy Sources, Part A Recovery, Util. Environ. Eff. (2019) 1–11, https://doi.org/10.1080/15567036.2019.1587093.spa
dcterms.bibliographicCitation[22] Y.D. Wang, T. Al-Shemmeri, P. Eames, J. McMullan, N. Hewitt, Y. Huang, S. Rezvani, An experimental investigation of the performance and gaseous exhaust emissions of a diesel engine using blends of a vegetable oil, Appl. Therm. Eng. 26 (2006) 1684–1691, https://doi.org/10.1016/j.applthermaleng.2005.11.013.spa
dcterms.bibliographicCitation[23] L. Chen, S. Ding, H. Liu, Y. Lu, Y. Li, A.P. Roskilly, Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine, Appl. Energy 203 (2017) 91–100, https://doi.org/10.1016/j.apenergy.2017.06.036.spa
dcterms.bibliographicCitation[24] C.T. Chong, J.-H. Ng, S. Ahmad, S. Rajoo, Oxygenated palm biodiesel: ignition, combustion and emissions quantification in a light-duty diesel engine, Energy Convers. Manag. 101 (2015) 317–325, https://doi.org/10.1016/j.enconman.2015.05.058.spa
dcterms.bibliographicCitation[25] S. Kumar, P. Dinesha, I. Bran, Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: an experimental analysis, Energy 140 (2017) 98–105, https://doi.org/10.1016/j.energy.2017.08.079.spa
dcterms.bibliographicCitation[26] S.H. Hosseini, A. Taghizadeh-Alisaraei, B. Ghobadian, A. Abbaszadeh-Mayvan, Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine, Energy 124 (2017) 543–552, https://doi.org/10.1016/j.energy.2017.02.109.spa
dcterms.bibliographicCitation[27] M.K. Yesilyurt, T. Eryilmaz, M. Arslan, A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends, Energy 165 (2018) 1332–1351, https://doi.org/10.1016/j.energy.2018.10.100.spa
dcterms.bibliographicCitation[28] C.R. Ferguson, A.T. Kirkpatrick, Internal Combustion Engines: Applied Thermosciences, third ed., John Wiley & Sons, 2016.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.csite.2020.100613
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsEmission control Air pollution Alternative fuels Environmental impact Nitrogen oxides Diesel enginespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por