Mostrar el registro sencillo del ítem
Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends
dc.contributor.author | Mejía, A. | |
dc.contributor.other | Leiva, M. | |
dc.contributor.other | Rincon-Montenegro, A. | |
dc.contributor.other | Gonzalez-Quiroga, A. | |
dc.contributor.other | Duarte- Forero, J. | |
dc.date.accessioned | 2022-11-15T21:24:51Z | |
dc.date.available | 2022-11-15T21:24:51Z | |
dc.date.issued | 2020-02-26 | |
dc.date.submitted | 2019-12-22 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/998 | |
dc.description.abstract | Diesel engines applications cover a broad spectrum, ranging from vehicles that transport passengers and move goods to specialized vehicles and equipment used in the construction and agriculture industries. However, diesel engines are a significant source of pollutant emissions that contribute to poor air quality, negative human health impacts, and climate change. This experimental case study develops emission maps based on statistical models for a single-cylinder, fourstroke, air-cooled diesel engine as a function of torque and engine speed. The tested fuels were 100% diesel (B0), and blends with 5% (B5) and 10% (B10) biodiesel originating from African oil palm (Elaeis guineensis). The study explores the individual contributions of NO and NO2 to NOx and discusses the correlation between CO and O2 emission maps. The statistical models of CO, CO2, and O2 feature R2 adjusted values greater than 0.8, while the models of NO and NO2 show R2 adjusted values of around 0.6. The apparent discrepancies in CO emission trends among previous studies are explained. The emission maps developed here are a practical alternative to predictive models and can assist in engine calibration and aftertreatment optimization while saving time and costs. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Elsevier Ltd | spa |
dc.title | Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends | spa |
dcterms.bibliographicCitation | [1] A.T. Hoang, Waste heat recovery from diesel engines based on Organic Rankine Cycle, Appl. Energy 231 (2018) 138–166, https://doi.org/10.1016/j. apenergy.2018.09.022. | spa |
dcterms.bibliographicCitation | [2] M. Tabatabaei, M. Aghbashlo, M. Dehhaghi, H.K.S. Panahi, A. Mollahosseini, M. Hosseini, M.M. Soufiyan, Reactor technologies for biodiesel production and processing: a review, Prog. Energy Combust. Sci. 74 (2019) 239–303, https://doi.org/10.1016/j.pecs.2019.06.001. | spa |
dcterms.bibliographicCitation | [3] C. Ericson, B. Westerberg, M. Andersson, R. Egnell, Modelling diesel engine combustion and NOx formation for model based control and simulation of engine and exhaust aftertreatment systems. https://doi.org/10.4271/2006-01-0687, 2006. | spa |
dcterms.bibliographicCitation | [4] X. Tauzia, A. Maiboom, H. Karaky, Semi-physical models to assess the influence of CI engine calibration parameters on NOx and soot emissions, Appl. Energy 208 (2017) 1505–1518, https://doi.org/10.1016/j.apenergy.2017.08.232. | spa |
dcterms.bibliographicCitation | [5] B. Rajesh Kumar, S. Saravanan, K. Rajaram, Combined effect of oxygenates and injection timing for low emissions and high performance in a diesel engine using multi-response optimisation, Alexandria Eng. J. 58 (2019) 625–636, https://doi.org/10.1016/j.aej.2019.03.009. | spa |
dcterms.bibliographicCitation | [6] B.P. BP, Energy outlook 2019 edition. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bpenergy- outlook-2019.pdf, 2019. | spa |
dcterms.bibliographicCitation | [7] N.S. Ekaab, N.H. Hamza, M.T. Chaichan, Performance and emitted pollutants assessment of diesel engine fuelled with biokerosene, Case Stud. Therm. Eng. 13 (2019) 100381, https://doi.org/10.1016/j.csite.2018.100381. | spa |
dcterms.bibliographicCitation | [8] M.T. Chaichan, A.A.H. Kadhum, A.A. Al-Amiery, Novel technique for enhancement of diesel fuel: impact of aqueous alumina nano-fluid on engine’s performance and emissions, Case Stud. Therm. Eng. 10 (2017) 611–620, https://doi.org/10.1016/j.csite.2017.11.006. | spa |
dcterms.bibliographicCitation | [9] A.K. Yadav, M.E. Khan, A.M. Dubey, A. Pal, Performance and emission characteristics of a transportation diesel engine operated with non-edible vegetable oils biodiesel, Case Stud. Therm. Eng. 8 (2016) 236–244, https://doi.org/10.1016/j.csite.2016.08.001. | spa |
dcterms.bibliographicCitation | [10] A.T. Hoang, V.V. Pham, A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil, Energy Sources, Part A Recovery, Util. Environ. Eff. 41 (2019) 611–625. | spa |
dcterms.bibliographicCitation | [11] M.A. Ghadikolaei, L. Wei, C.S. Cheung, K.-F. Yung, Effects of engine load and biodiesel content on performance and regulated and unregulated emissions of a diesel engine using contour-plot map, Sci. Total Environ. 658 (2019) 1117–1130, https://doi.org/10.1016/j.scitotenv.2018.12.270. | spa |
dcterms.bibliographicCitation | [12] R. Rezaei, F. Dinkelacker, B. Tilch, T. Delebinski, M. Brauer, Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines, Int. J. Engine Res. 17 (2015) 846–856, https://doi.org/10.1177/1468087415619302. | spa |
dcterms.bibliographicCitation | [13] J.A. V�elez Godi~no, F.J. Jim�enez-Espadafor Aguilar, M.T. García, Simulation of HCCI combustion in air-cooled off-road engines fuelled with diesel and biodiesel, J. Energy Inst. 91 (2018) 549–562, https://doi.org/10.1016/j.joei.2017.04.002. | spa |
dcterms.bibliographicCitation | [14] S. Roy, R. Banerjee, P.K. Bose, Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network, Appl. Energy 119 (2014) 330–340, https://doi.org/10.1016/j.apenergy.2014.01.044. | spa |
dcterms.bibliographicCitation | [15] K. Cheikh, A. Sary, L. Khaled, L. Abdelkrim, T. Mohand, Experimental assessment of performance and emissions maps for biodiesel fueled compression ignition engine, Appl. Energy 161 (2016) 320–329, https://doi.org/10.1016/j.apenergy.2015.10.042. | spa |
dcterms.bibliographicCitation | [16] S. Imran, D.R. Emberson, D.S. Wen, A. Diez, R.J. Crookes, T. Korakianitis, Performance and specific emissions contours of a diesel and RME fueled compressionignition engine throughout its operating speed and power range, Appl. Energy 111 (2013) 771–777, https://doi.org/10.1016/j.apenergy.2013.04.040. | spa |
dcterms.bibliographicCitation | [17] H. Xu, B. Yin, S. Liu, H. Jia, Performance optimization of diesel engine fueled with diesel–jatropha curcas biodiesel blend using response surface methodology, J. Mech. Sci. Technol. 31 (2017) 4051–4059, https://doi.org/10.1007/s12206-017-0753-5. | spa |
dcterms.bibliographicCitation | [18] A.M. Taborda, R.A. Varella, T.L. Farias, G.O. Duarte, Evaluation of technological solutions for compliance of environmental legislation in light-duty passenger: a numerical and experimental approach, Transport. Res. Transport Environ. 70 (2019) 135–146, https://doi.org/10.1016/j.trd.2019.04.004. | spa |
dcterms.bibliographicCitation | [19] A.K. Yadav, A. Pal, A.M. Dubey, Experimental studies on utilization of prunus armeniaca L. (Wild apricot) biodiesel as an alternative fuel for CI engine, Waste and Biomass Valorization 9 (2018), https://doi.org/10.1007/s12649-017-9935-8, 1961–1969. | spa |
dcterms.bibliographicCitation | [20] V. Hariram, J.G. John, S. Seralathan, T. Micha Premkumar, Comparative analysis of combustion, performance and emission phenomenon of a CI engine fuelled with algal and cotton seed biodiesel, Int. J. Ambient Energy (2018) 1–12, https://doi.org/10.1080/01430750.2018.1562977. | spa |
dcterms.bibliographicCitation | [21] S. Sundaram, V. Ramasamy, N. Natarajan, J. Sivakumar, Investigation on performance and emission characteristics of cardanol–diesel blends in a single cylinder DI diesel engine, Energy Sources, Part A Recovery, Util. Environ. Eff. (2019) 1–11, https://doi.org/10.1080/15567036.2019.1587093. | spa |
dcterms.bibliographicCitation | [22] Y.D. Wang, T. Al-Shemmeri, P. Eames, J. McMullan, N. Hewitt, Y. Huang, S. Rezvani, An experimental investigation of the performance and gaseous exhaust emissions of a diesel engine using blends of a vegetable oil, Appl. Therm. Eng. 26 (2006) 1684–1691, https://doi.org/10.1016/j.applthermaleng.2005.11.013. | spa |
dcterms.bibliographicCitation | [23] L. Chen, S. Ding, H. Liu, Y. Lu, Y. Li, A.P. Roskilly, Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine, Appl. Energy 203 (2017) 91–100, https://doi.org/10.1016/j.apenergy.2017.06.036. | spa |
dcterms.bibliographicCitation | [24] C.T. Chong, J.-H. Ng, S. Ahmad, S. Rajoo, Oxygenated palm biodiesel: ignition, combustion and emissions quantification in a light-duty diesel engine, Energy Convers. Manag. 101 (2015) 317–325, https://doi.org/10.1016/j.enconman.2015.05.058. | spa |
dcterms.bibliographicCitation | [25] S. Kumar, P. Dinesha, I. Bran, Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: an experimental analysis, Energy 140 (2017) 98–105, https://doi.org/10.1016/j.energy.2017.08.079. | spa |
dcterms.bibliographicCitation | [26] S.H. Hosseini, A. Taghizadeh-Alisaraei, B. Ghobadian, A. Abbaszadeh-Mayvan, Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine, Energy 124 (2017) 543–552, https://doi.org/10.1016/j.energy.2017.02.109. | spa |
dcterms.bibliographicCitation | [27] M.K. Yesilyurt, T. Eryilmaz, M. Arslan, A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends, Energy 165 (2018) 1332–1351, https://doi.org/10.1016/j.energy.2018.10.100. | spa |
dcterms.bibliographicCitation | [28] C.R. Ferguson, A.T. Kirkpatrick, Internal Combustion Engines: Applied Thermosciences, third ed., John Wiley & Sons, 2016. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1016/j.csite.2020.100613 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Emission control Air pollution Alternative fuels Environmental impact Nitrogen oxides Diesel engine | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |