Mostrar el registro sencillo del ítem
Search for multimessenger signals in NOvA coincident with LIGO/Virgo detections
dc.contributor.author | Acero, M. A. | |
dc.contributor.other | Adamson, P. | |
dc.contributor.other | Colo, M. | |
dc.date.accessioned | 2022-11-15T21:24:42Z | |
dc.date.available | 2022-11-15T21:24:42Z | |
dc.date.issued | 2021-05-06 | |
dc.date.submitted | 2020-01-22 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/997 | |
dc.description.abstract | Using the NOvA neutrino detectors, a broad search has been performed for any signal coincident with 28 gravitational wave events detected by the LIGO/Virgo Collaboration between September 2015 and July 2019. For all of these events, NOvA is sensitive to possible arrival of neutrinos and cosmic rays of GeV and higher energies. For five (seven) events in the NOvA Far (Near) Detector, timely public alerts from the LIGO/Virgo Collaboration allowed recording of MeV-scale events. No signal candidates were found. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | American Physical Society | spa |
dc.title | Search for multimessenger signals in NOvA coincident with LIGO/Virgo detections | spa |
dcterms.bibliographicCitation | [1] K. Hirata et al. (Kamiokande-II Collaboration), Observation of a Neutrino burst from the Supernova SN 1987a , Phys. Rev. Lett. 58, 1490 (1987). | spa |
dcterms.bibliographicCitation | [2] R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, A. Ciocio, R. Claus et al., Observation of a Neutrino Burst in Coincidence with Supernova SN 1987a in the Large Magellanic Cloud, Phys. Rev. Lett. 58, 1494 (1987). | spa |
dcterms.bibliographicCitation | [3] E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheina, Possible detection of a neutrino signal on 23 February 1987 at the Baksan underground scintillation telescope of the institute of nuclear research, JETP Lett. 45, 589 (1987), https://inspirehep.net/record/255616. | spa |
dcterms.bibliographicCitation | [4] B. P. Abbott et al. (Virgo, LIGO Scientific Collaborations), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016). | spa |
dcterms.bibliographicCitation | [5] B. P. Abbott et al. (Virgo, LIGO Scientific Collaborations), GW170817: Observation of Gravitational Waves from a binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017). | spa |
dcterms.bibliographicCitation | [6] A. Goldstein et al., An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A, Astrophys. J. 848, L14 (2017). | spa |
dcterms.bibliographicCitation | [7] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL Collaborations), Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. 848, L13 (2017). | spa |
dcterms.bibliographicCitation | [8] M. G. Aartsen et al. (IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403 Collaborations), Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science 361, eaat1378 (2018). | spa |
dcterms.bibliographicCitation | [9] N. Fraija, MeV-GeV neutrino propagation as a signal of magnetic field amplification in neutron star merger, J. High Energy Astrophys. 11–12, 29 (2016). | spa |
dcterms.bibliographicCitation | [10] F. Foucart, R. Haas, M. D. Duez, E. O’Connor, C. D. Ott, L. Roberts, L. E. Kidder, J. Lippuner, H. P. Pfeiffer, and M. A. Scheel, Low mass binary neutron star mergers: gravitational waves and neutrino emission, Phys. Rev. D 93, 044019 (2016). | spa |
dcterms.bibliographicCitation | [11] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations), A first targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors , Phys. Rev. D 94, 102001 (2016). | spa |
dcterms.bibliographicCitation | [12] Y. Cui, M. Lewicki, D. E. Morrissey, and J. D. Wells, Cosmic archaeology with gravitational waves from cosmic strings, Phys. Rev. D 97, 123505 (2018). | spa |
dcterms.bibliographicCitation | [13] M. Agostini et al., A search for low-energy neutrinos correlated with gravitational wave events GW150914, GW151226 and GW170104 with the Borexino detector, Astrophys. J. 850, 21 (2017). | spa |
dcterms.bibliographicCitation | [14] A. Gando et al. (KamLAND Collaboration), Search for electron antineutrinos associated with gravitational wave events GW150914 and GW151226 using KamLAND, Astrophys. J. 829, L34 (2016). | spa |
dcterms.bibliographicCitation | [15] K. Abe et al. (Super-Kamiokande Collaboration), Search for neutrinos in Super-Kamiokande associated with gravitational wave events GW150914 and GW151226, Astrophys. J. 830, L11 (2016). | spa |
dcterms.bibliographicCitation | [16] S. Adrian-Martinez et al. (Virgo, IceCube, ANTARES, LIGO Scientific Collaborations), High-energy neutrino follow-up search of gravitational wave event GW150914 with Antares and IceCube , Phys. Rev. D 93, 122010 (2016). | spa |
dcterms.bibliographicCitation | [17] A. Albert et al. (Virgo, IceCube, ANTARES, LIGO Scientific Collaborations), Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube , Phys. Rev. D 96, 022005 (2017). | spa |
dcterms.bibliographicCitation | [18] A. Aab et al. (Pierre Auger Collaboration), Ultrahighenergy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory, Phys. Rev. D 94, 122007 (2016). | spa |
dcterms.bibliographicCitation | [19] D. S. Ayres et al. (NOvA Collaboration), The NOvA Technical Design Report, FERMI-LAB-DESIGN-2007- 01, 2007. | spa |
dcterms.bibliographicCitation | [20] P. Adamson et al., The NuMI neutrino beam, Nucl. Instrum. Methods A 806, 279 (2016) | spa |
dcterms.bibliographicCitation | [21] M. A. Acero et al. (NOvA Collaboration), First Measurement of Neutrino Oscillation Parameters Using Neutrinos and Antineutrinos by NOvA , Phys. Rev. Lett. 123, 151803 (2019). | spa |
dcterms.bibliographicCitation | [22] R. L. Talaga et al., PVC extrusion development and production for the NOvA neutrino experiment, Nucl. Instrum. Methods A 861, 77 (2017). | spa |
dcterms.bibliographicCitation | [23] S. Mufson et al., Liquid scintillator production for the NOvA experiment, Nucl. Instrum. Methods A 799, 1 (2015). | spa |
dcterms.bibliographicCitation | [24] A. Norman et al., Performance of the NOvA data acquisition and trigger systems for the full 14 kT far detector, J. Phys. Conf. Ser. 664, 082041 (2015). | spa |
dcterms.bibliographicCitation | [25] B. P. Abbott et al., Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , Living Rev. Relativity 21, 3 (2018). | spa |
dcterms.bibliographicCitation | [26] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo During the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019). | spa |
dcterms.bibliographicCitation | [27] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190408an: Identification of a GW binary merger candidate, GCN Circular No. 24069 (2019). | spa |
dcterms.bibliographicCitation | [28] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190412m: Identification of a GWbinary merger candidate, GCN Circular No. 24098 (2019). | spa |
dcterms.bibliographicCitation | [29] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190421ar: Identification of a GWbinary merger candidate, GCN Circular No. 24141 (2019). | spa |
dcterms.bibliographicCitation | [30] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190425z: Identification of a GW binary merger candidate, GCN Circular No. 24168 (2019). | spa |
dcterms.bibliographicCitation | [31] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190426c: Identification of a GW binary merger candidate, GCN Circular No. 24237 (2019). | spa |
dcterms.bibliographicCitation | [32] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190503bf: Identification of a GWbinary merger candidate, GCN Circular No. 24377 (2019). | spa |
dcterms.bibliographicCitation | [33] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190510g: Identification of a GW binary merger candidate, GCN Circular No. 24442 (2019). | spa |
dcterms.bibliographicCitation | [34] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190512at: Identification of a GWbinary merger candidate, GCN Circular No. 24503 (2019). | spa |
dcterms.bibliographicCitation | [35] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190513bm: Identification of a GW binary merger candidate, GCN Circular No. 24522 (2019). | spa |
dcterms.bibliographicCitation | [36] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190517h: Identification of a GW binary merger candidate, GCN Circular No. 24570 (2019). | spa |
dcterms.bibliographicCitation | [37] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190519bj: Identification of a GWbinary merger candidate, GCN Circular No. 24598 (2019). | spa |
dcterms.bibliographicCitation | [38] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190521g: Identification of a GW binary merger candidate, GCN Circular No. 24621 (2019) | spa |
dcterms.bibliographicCitation | [39] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190521r: Identification of a GW binary merger candidate, GCN Circular No. 24632 (2019). | spa |
dcterms.bibliographicCitation | [40] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190602aq: Identification of a GW binary merger candidate, GCN Circular No. 24717 (2019). | spa |
dcterms.bibliographicCitation | [41] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190630ag: Identification of a GW binary merger candidate, GCN Circular No. 24922 (2019). | spa |
dcterms.bibliographicCitation | [42] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190701ah: Identification of a GW binary merger candidate, GCN Circular No. 24950 (2019). | spa |
dcterms.bibliographicCitation | [43] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190706ai: Identification of a GWbinary merger candidate, GCN Circular No. 24998 (2019). | spa |
dcterms.bibliographicCitation | [44] LIGO and Virgo Scientific Collaborations, LIGO, Virgo S190707q: Identification of a GW binary merger candidate, GCN Circular No. 25012 (2019). | spa |
dcterms.bibliographicCitation | [45] B. P. Abbott et al. (KAGRA, LIGO Scientific, VIRGO Collaborations), Prospects for observing and localizing gravitational- wave transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Relativity 21, 3 (2018). | spa |
dcterms.bibliographicCitation | [46] P. Antonioli et al., The supernova early warning system, New J. Phys. 6, 114 (2004). | spa |
dcterms.bibliographicCitation | [47] J. A. Vasel, A. Sheshukov, and A. Habig (NOvA Collaboration), Observing the next galactic supernova with the NOvA detectors, in Proceedings, Meeting of the APS Division of Particles and Fields (DPF 2017) at Fermilab (SLAC Electronic Conference Proceedings Archive, Menlo Park, CA, 2017). | spa |
dcterms.bibliographicCitation | [48] A. Mirizzi et al., Supernova neutrinos: Production, oscillations and detection, Riv. Nuovo Cimento 39, 1 (2016). | spa |
dcterms.bibliographicCitation | [49] C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator , Nucl. Instrum. Methods A 614, 87 (2010). | spa |
dcterms.bibliographicCitation | [50] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann, HEALPix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere , Astrophys. J. 622, 759 (2005). | spa |
dcterms.bibliographicCitation | [51] A. Mirizzi, G. G. Raffelt, and P. D. Serpico, Earth matter effects in supernova neutrinos: optimal detector locations, J. Cosmol. Astropart. Phys. 05 (2006) 012. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1103/PhysRevD.101.112006 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | NA | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |