Mostrar el registro sencillo del ítem
Use of sludge ash from drinking water treatment plant in hydraulic mortars
dc.contributor.author | Bohórquez González, Kevin | |
dc.contributor.other | Pacheco, Emmanuel | |
dc.contributor.other | Guzmán, Andrés | |
dc.contributor.other | Avila Pereira, Yoleimy | |
dc.contributor.other | Cano Cuadro, Heidis | |
dc.contributor.other | Valencia, Javier A.F. | |
dc.date.accessioned | 2022-11-15T21:23:54Z | |
dc.date.available | 2022-11-15T21:23:54Z | |
dc.date.issued | 2020-01-13 | |
dc.date.submitted | 2019-10-15 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/992 | |
dc.description.abstract | The present study investigated the use of sludge ash from water treatment plants as supplementary cementing material, elaborating hydraulic mortars with different levels of cement replacement by sludge ash (10 wt% and 30 wt%) and different temperatures of calcination (600 °C and 800 °C). Characterization of sludge ash and mortars includes XRF, XRD, particle size distribution by laser diffraction, compressive strength, and SEM-EDS. The results show that SiO2, Al2O3, and Fe2O3 compose 90 % of the sludge ash, and it has potential pozzolanic activity. It is evidenced that there is a significant influence of the variable ratio of sludge ash:cement in the compressive strength of the mortar cubes over other variables. Overall, this study showed that the sludge ash could be considered as a viable and sustainable alternative for the construction sector. Despite the benefits of the suggested replacement, the presence of amorphous SiO2 requires a review of long-time chemical behavior. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Elsevier Ltd | spa |
dc.title | Use of sludge ash from drinking water treatment plant in hydraulic mortars | spa |
dcterms.bibliographicCitation | [1] M. Smol, J. Kulczycka, A. Henclik, K. Gorazda, Z. Wzorek, The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy, J. Clean. Prod. 95 (2015) 45–54, https://doi.org/10.1016/j.jclepro.2015. 02.051. | spa |
dcterms.bibliographicCitation | [2] J.S. Gregg, R.J. Andres, G. Marland, China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production, Geophys. Res. Lett. 35 (2008), https://doi.org/10.1029/2007GL032887. | spa |
dcterms.bibliographicCitation | [3] G. Habert, Environmental impact of Portland cement production, Eco-Efficient Concrete, Elsevier, 2013, pp. 3–25, https://doi.org/10.1533/9780857098993.1.3. | spa |
dcterms.bibliographicCitation | [4] K.L. Scrivener, V.M. John, E.M. Gartner, Eco-Efficient Cements: Potential Economically Viable Solutions for a low-CO2 Cement- Based Materials Industry, United Nations Environment Program, 2016 (Accessed September 17, 2019), http://spiral.imperial.ac.uk/handle/10044/1/51016. | spa |
dcterms.bibliographicCitation | [5] J.M. Franco de Carvalho, T.V. de Melo, W.C. Fontes, J.O. dos S. Batista, G.J. Brigolini, R.A.F. Peixoto, More eco-efficient concrete: an approach on optimization in the production and use of waste-based supplementary cementing materials, Constr. Build. Mater. 206 (2019) 397–409, https://doi.org/10.1016/j. conbuildmat.2019.02.054. | spa |
dcterms.bibliographicCitation | [6] S. Naamane, Z. Rais, M. Chaouch, Incorporation of wastewater sludge treated by water washout in cement, J. Mater. Environ. Sci. 5 (2014) 2515–2521. | spa |
dcterms.bibliographicCitation | [7] E. Kendir, E. Kentel, F.D. Sanin, Evaluation of heavy metals and associated health risks in a metropolitan wastewater treatment plant’s sludge for its land application, Hum. Ecol. Risk Assess. 21 (2015) 1631–1643, https://doi.org/10.1080/10807039. 2014.966590. | spa |
dcterms.bibliographicCitation | [8] A.K. Venkatesan, R.U. Halden, Wastewater treatment plants as chemical observatories to forecast ecological and human health risks of manmade chemicals, Sci. Rep. 4 (2015) 3731, https://doi.org/10.1038/srep03731. | spa |
dcterms.bibliographicCitation | [9] K. Bondarczuk, A. Markowicz, Z. Piotrowska-Seget, The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application, Environ. Int. 87 (2016) 49–55, https://doi.org/10.1016/j.envint.2015.11.011. | spa |
dcterms.bibliographicCitation | [10] N. Gupta, S.S. Gaurav, A. Kumar, Molecular basis of aluminium toxicity in plants: a review, AJPS 04 (2013) 21–37, https://doi.org/10.4236/ajps.2013.412A3004. | spa |
dcterms.bibliographicCitation | [11] C. Exley, Aluminum should now be considered a primary etiological factor in Alzheimer’s disease, ADR 1 (2017) 23–25, https://doi.org/10.3233/ADR-170010. | spa |
dcterms.bibliographicCitation | [12] M.A. Tantawy, Characterization and pozzolanic properties of calcined alum sludge, Mater. Res. Bull. 61 (2015) 415–421, https://doi.org/10.1016/j.materresbull.2014. 10.042. | spa |
dcterms.bibliographicCitation | [13] A.L.G. Gastaldini, M.F. Hengen, M.C.C. Gastaldini, F.D. do Amaral, M.B. Antolini, T. Coletto, The use of water treatment plant sludge ash as a mineral addition, Constr. Build. Mater. 94 (2015) 513–520, https://doi.org/10.1016/j.conbuildmat. 2015.07.038. | spa |
dcterms.bibliographicCitation | [14] S.E. Hagemann, A.L.G. Gastaldini, M. Cocco, S.L. Jahn, L.M. Terra, Synergic effects of the substitution of Portland cement for water treatment plant sludge ash and ground limestone: technical and economic evaluation, J. Clean. Prod. 214 (2019) 916–926, https://doi.org/10.1016/j.jclepro.2018.12.324. | spa |
dcterms.bibliographicCitation | [15] J.J. de Oliveira Andrade, M.C. Wenzel, G.H. da Rocha, S.R. da Silva, Performance of rendering mortars containing sludge from water treatment plants as fine recycled aggregate, J. Clean. Prod. 192 (2018) 159–168, https://doi.org/10.1016/j.jclepro. 2018.04.246. | spa |
dcterms.bibliographicCitation | [16] ICONTEC, NTC121 – Especificación de desempeño para cemento hidráulico, ICONTEC, 2017 (Accessed September 17, 2019), https://tienda.icontec.org/ producto/ntc121-2/. | spa |
dcterms.bibliographicCitation | [17] ASTM, C1157/C1157M - 17 Performance Specification for Hydraulic Cement, ASTM International, 2017, https://doi.org/10.1520/C1157_C1157M-17. [18] ASTM, C778-17 Specification for Standard Sand, ASTM International, 2017, https://doi.org/10.1520/C0778-17. | spa |
dcterms.bibliographicCitation | [18] ASTM, C778-17 Specification for Standard Sand, ASTM International, 2017, https://doi.org/10.1520/C0778-17. | spa |
dcterms.bibliographicCitation | [19] Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Resolución 2115, (2007). | spa |
dcterms.bibliographicCitation | [20] D. Vouk, D. Nakic, N. Stirmer, C. Cheeseman, Influence of combustion temperature on the performance of sewage sludge ash as a supplementary cementitious material, J. Mater. Cycles Waste Manage. 20 (2018) 1458–1467, https://doi.org/10.1007/ s10163-018-0707-8. | spa |
dcterms.bibliographicCitation | [21] S. Naamane, Z. Rais, M. Lachquar, M. Taleb, Characterization of calcined sewage sludge for its incorporation in cement, J. Mater. Environ. Sci. 5 (2014) 2212–2216. | spa |
dcterms.bibliographicCitation | [22] ASTM, C109/C109M - 16a Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Or [50-mm] Cube Specimens), ASTM International, 2016, https://doi.org/10.1520/C0109_C0109M-16A. | spa |
dcterms.bibliographicCitation | [23] M. Pérez-Carrión, F. Baeza-Brotons, J. Payá, J.M. Saval, E. Zornoza, M.V. Borrachero, P. Garcés, Potential use of sewage sludge ash (SSA) as a cement replacement in precast concrete blocks, Mater. Construcc. 64 (2014) e002, https:// doi.org/10.3989/mc.2014.06312. | spa |
dcterms.bibliographicCitation | [24] ABNT NBR, 15895 Materiais pozolânicos – Determinação do teor de hidróxido de cálcio fixado – Método Chapelle modificado, ABNT NBR, n.d. https://www.normas. com.br/visualizar/abnt-nbr-nm/30128/abnt-nbr15895-materiais-pozolanicosdeterminacao- do-teor-de-hidroxido-de-calcio-fixado-metodo-chapelle-modificado (Accessed September 17, 2019). | spa |
dcterms.bibliographicCitation | [25] K. Scrivener, R. Snellings, B. Lothenbach, A Practical Guide to Microstructural Analysis of Cementitious Materials, CRC Press, 2018. | spa |
dcterms.bibliographicCitation | [26] W. Navidi, Statistics for Engineers and Scientists, 3 edition, McGraw-Hill Science/ Engineering/Math, New York, 2010. | spa |
dcterms.bibliographicCitation | [27] M. Raverdy, F. Brivot, A.M. Paillere, R. Dron, Appreciation de l’activite pouzzolanique des constituants secondaires, Paris, France (1980), pp. 36–41. | spa |
dcterms.bibliographicCitation | [28] T. Ahmad, K. Ahmad, M. Alam, Investigating calcined filter backwash solids as supplementary cementitious material for recycling in construction practices, Constr. Build. Mater. 175 (2018) 664–671, https://doi.org/10.1016/j.conbuildmat.2018. 04.227. | spa |
dcterms.bibliographicCitation | [29] D. Sánchez, Tecnologia del concreto y del mortero, 1st. edition, Bhandar Ediciones LTDA, Santa fé de Bogotá, 2013. | spa |
dcterms.bibliographicCitation | [30] ASTM, C618-19 Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, 2019, https://doi.org/10.1520/ C0618-19. | spa |
dcterms.bibliographicCitation | [31] M. Gener Rizo, J.M. Alonso Lavernia, Influencia de la composición mineralógica de puzolanas naturales en las propiedades de los cementos con adiciones, Mater. construcc. 52 (2002) 73–77, https://doi.org/10.3989/mc.2002.v52.i267.327 | spa |
dcterms.bibliographicCitation | [32] V.S. Ramachandran, Concrete Admixtures Handbook: Properties, Science and Technology, William Andrew, 1996. | spa |
dcterms.bibliographicCitation | [33] S. De Carvalho Gomes, J.L. Zhou, W. Li, G. Long, Progress in manufacture and properties of construction materials incorporating water treatment sludge: a review, Resources, Conserv. Recycl. 145 (2019) 148–159, https://doi.org/10.1016/j. resconrec.2019.02.032. | spa |
dcterms.bibliographicCitation | [34] F. Rajabipour, E. Giannini, C. Dunant, J.H. Ideker, M.D.A. Thomas, Alkali–silica reaction: current understanding of the reaction mechanisms and the knowledge gaps, Cem. Concr. Res. 76 (2015) 130–146, https://doi.org/10.1016/j.cemconres. 2015.05.024. | spa |
dcterms.bibliographicCitation | [35] A. Tironi, M.A. Trezza, E. Irassar, A.N. Scian, Thermal activation of bentonites for their use as pozzolan, Revista de la Construccion. 11 (2012) 44–53. | spa |
dcterms.bibliographicCitation | [36] Mdel P. Durante Ingunza, G. Camarini, F. Murilo Silva da Costa, Performance of mortars with the addition of septic tank sludge ash, Constr. Build. Mater. 160 (2018) 308–315, https://doi.org/10.1016/j.conbuildmat.2017.11.053. | spa |
dcterms.bibliographicCitation | [37] K. Pospíšil, A. Frýbort, A. Kratochvíl, J. Macháčková, Scanning Electron microscopy method as a tool for the evaluation of selected materials microstructure, ToTS 1 (2008) 13–20, https://doi.org/10.5507/tots.2008.002. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1016/j.mtcomm.2020.100930 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Supplementary cementitious material Sludge ash Compressive strength Characterization Construction materials | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Química | spa |
dc.publisher.sede | Sede Norte | spa |