Mostrar el registro sencillo del ítem

dc.contributor.authorVallejo, William
dc.contributor.otherCantillo, Alvaro
dc.contributor.otherSalazar, Briggitte
dc.contributor.otherDiaz-Uribe, Carlos
dc.contributor.otherRamos, Wilkendry
dc.contributor.otherRomero, Eduard
dc.contributor.otherHurtado, Mikel
dc.date.accessioned2022-11-15T21:23:30Z
dc.date.available2022-11-15T21:23:30Z
dc.date.issued2020-05-11
dc.date.submitted2020-03-14
dc.identifier.urihttps://hdl.handle.net/20.500.12834/989
dc.description.abstractWe synthesized and characterized both Co-doped ZnO (ZnO:Co) and Cu-doped ZnO (ZnO:Cu) thin films. The catalysts’ synthesis was carried out by the sol–gel method while the doctor blade technique was used for thin film deposition. The physicochemical characterization of the catalysts was carried out by Raman spectroscopy, scanning electron microscopy (SEM), X-ray di raction, and di use reflectance measurements. The photocatalytic activity was studied under visible irradiation in aqueous solution, and kinetic parameters were determined by pseudo-first-order fitting. The Raman spectra results evinced the doping process and suggested the formation of heterojunctions for both dopants. The structural di raction patterns indicated that the catalysts were polycrystalline and demonstrated the presence of a ZnO wurtzite crystalline phase. The SEM analysis showed that the morphological properties changed significantly, the micro-aggregates disappeared, and agglomeration was reduced after modification of ZnO. The ZnO optical bandgap (3.22 eV) reduced after the doping process, these being ZnO:Co (2.39 eV) and ZnO:Co (3.01 eV). Finally, the kinetic results of methylene blue photodegradation reached 62.6% for ZnO:Co thin films and 42.5% for ZnO:Cu thin films.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMDPIspa
dc.titleArticle Comparative Study of ZnO Thin Films Doped with Transition Metals (Cu and Co) for Methylene Blue Photodegradation under Visible Irradiationspa
dcterms.bibliographicCitation1. Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. E ects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290.spa
dcterms.bibliographicCitation2. Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse e uent by ion-exchange adsorbents. Chemosphere 2018, 209, 201–219.spa
dcterms.bibliographicCitation3. Fabbri, D.; López-Muñoz, M.J.; Daniele, A.; Medana, C.; Calza, P. Photocatalytic abatement of emerging pollutants in pure water and wastewater e uent by TiO 2 and Ce-ZnO: Degradation kinetics and assessment of transformation products. Photochem. Photobiol. Sci. 2019, 18, 845–852.spa
dcterms.bibliographicCitation4. Zelinski, D.W.; dos Santos, T.P.M.; Takashina, T.A.; Leifeld, V.; Igarashi-Mafra, L. Photocatalytic Degradation of Emerging Contaminants: Artificial Sweeteners. Water. Air. Soil Pollut. 2018, 229, 1–12.spa
dcterms.bibliographicCitation5. Regulska, E.; Rivera-Nazario, D.; Karpinska, J.; Plonska-Brzezinska, M.; Echegoyen, L. Zinc Porphyrin-Functionalized Fullerenes for the Sensitization of Titania as a Visible-Light Active Photocatalyst: River Waters and Wastewaters Remediation. Molecules 2019, 24, 1118.spa
dcterms.bibliographicCitation6. Ansari, S.A.; Ansari, S.G.; Foaud, H.; Cho, M.H. Facile and sustainable synthesis of carbon-doped ZnO nanostructures towards the superior visible light photocatalytic performance. New J. Chem. 2017, 41, 9314–9320.spa
dcterms.bibliographicCitation7. Naldoni, A.; Riboni, F.; Guler, U.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis. Nanophotonics 2016, 5, 112–133.spa
dcterms.bibliographicCitation8. Sedghi, R.; Heidari, F. A novel & e ective visible light-driven TiO2/magnetic porous graphene oxide nanocomposite for the degradation of dye pollutants. RSC Adv. 2016, 6, 49459–49468.spa
dcterms.bibliographicCitation9. Balu, S.; Uma, K.; Pan, G.T.; Yang, T.C.K.; Ramaraj, S.K. Degradation of methylene blue dye in the presence of visible light using SiO2@ -Fe2O3 nanocomposites deposited on SnS2 flowers. Materials 2018, 11, 1030.spa
dcterms.bibliographicCitation10. Loh, K.; Gaylarde, C.C.; Shirakawa, M.A. Photocatalytic activity of ZnO and TiO2 ‘nanoparticles’ for use in cement mixes. Constr. Build. Mater. 2018, 167, 853–859.spa
dcterms.bibliographicCitation11. Saravanakkumar, D.; Oualid, H.A.; Brahmi, Y.; Ayeshamariam, A.; Karunanaithy, M.; Saleem, A.M.; Kaviyarasu, K.; Sivaranjani, S.; Jayachandran, M. Synthesis and characterization of CuO/ZnO/CNTs thin films on copper substrate and its photocatalytic applications. OpenNano 2019, 4, 100025.spa
dcterms.bibliographicCitation12. Zyoud, A.; Zaatar, N.; Saadeddin, I.; Helal, M.H.; Campet, G.; Hakim, M.; Park, D.; Hilal, H.S. Alternative natural dyes in water purification: Anthocyanin as TiO2-sensitizer in methyl orange photo-degradation. Solid State Sci. 2011, 13, 1268–1275.spa
dcterms.bibliographicCitation13. Elango, G.; Roopan, S.M. E cacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol. B Biol. 2016, 155, 34–38.spa
dcterms.bibliographicCitation14. Das, A.; Malakar, P.; Nair, R.G. Engineering of ZnO nanostructures for e cient solar photocatalysis. Mater. Lett. 2018, 219, 76–80.spa
dcterms.bibliographicCitation15. Schumann, J.; Eichelbaum, M.; Lunkenbein, T.; Thomas, N.; Álvarez Galván, M.C.; Schlögl, R.; Behrens, M. Promoting Strong Metal Support Interaction: Doping ZnO for Enhanced Activity of Cu/ZnO:M (M = Al, Ga, Mg) Catalysts. ACS Catal. 2015, 5, 3260–3270.spa
dcterms.bibliographicCitation16. Kumari,V.; Mittal, A.; Jindal, J.; Yadav, S.; Kumar, N. S-, N- and C-doped ZnO as semiconductor photocatalysts: A review. Front. Mater. Sci. 2019, 13, 1–22.spa
dcterms.bibliographicCitation17. Bharat, T.C.; Mondal, S.; Gupta, H.S.; Singh, P.K.; Das, A.K. Synthesis of Doped Zinc Oxide Nanoparticles: A Review. Mater. Today Proc. 2019, 11, 767–775.spa
dcterms.bibliographicCitation18. Poornaprakash, U.; Chalapathi, K.; Subramanyam, S.V.; Prabhakar Vattikuti, Y.; Shun, S.P. E ects of Ce incorporation on the structural, morphological, optical, magnetic, and photocatalytic characteristics of ZnO nanoparticles. Mater. Res. Express 2019, 6, 105356.spa
dcterms.bibliographicCitation19. Poornaprakash, B.; Subramanyam, K.; Vattikuti, S.V.P.; Pratap Reddy, M.S. Achieving enhanced ferromagnetism in ZnTbO nanoparticles through Cu co-doping. Ceram. Int. 2019, 45, 16347–16352spa
dcterms.bibliographicCitation20. Poornaprakash, B.; Chalapathi, U.; Poojitha, P.T.; Vattikuti, S.V.P.; Reddy, M.S.P. (Al, Cu) Co-doped ZnS nanoparticles: Structural, chemical, optical, and photocatalytic properties. J. Mater. Sci. Mater. Electron. 2019, 30, 9897–9902.spa
dcterms.bibliographicCitation21. Kaur, M.; Umar, A.; Mehta, S.K.; Singh, S.; Kansal, S.K.; Fouad, H.; Alothman, O.Y. Rapid Solar-Light Driven Superior Photocatalytic Degradation of Methylene Blue Using MoS2-ZnO Heterostructure Nanorods Photocatalyst. Material 2018, 11, 2254.spa
dcterms.bibliographicCitation22. Vallejo, W.; Díaz-Uribe, C.; Rios, K. Methylene Blue Photocatalytic Degradation under Visible Irradiation on In2S3 Synthesized by Chemical Bath Deposition. Adv. Phys. Chem. 2017, 2017, 1–5.spa
dcterms.bibliographicCitation23. Subash, B.; Krishnakumar, B.; Swaminathan, M.; Shanthi, M. Highly E cient, Solar Active, and Reusable Photocatalyst: Zr-Loaded Ag–ZnO for Reactive Red 120 Dye Degradation with Synergistic E ect and Dye-Sensitized Mechanism. Langmuir 2013, 29, 939–949.spa
dcterms.bibliographicCitation24. Aby, H.; Kshirsagar, A.; Pk, K. Plasmon Mediated Photocatalysis by Solar Active Ag/ZnO Nanostructures: Degradation of Organic Pollutants in Aqueous Conditions. J. Mater Sci Nanotechnol 2016, 4.spa
dcterms.bibliographicCitation25. Díaz-Uribe, C.; Viloria, J.; Cervantes, L.; Vallejo,W.; Navarro, K.; Romero, E.; Quiñones, C. Photocatalytic Activity of Ag-TiO2 Composites Deposited by Photoreduction under UV Irradiation. Int. J. Photoenergy 2018, 2018, 1–8.spa
dcterms.bibliographicCitation26. Chen, L.; Tran, T.T.; Huang, C.; Li, J.; Yuan, L.; Cai, Q. Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films. Appl. Surf. Sci. 2013, 273, 82–88.spa
dcterms.bibliographicCitation27. Poornaprakash, B.; Chalapathi, U.; Poojitha, P.T.; Vattikuti, S.V.P.; Park, S.H. Co-Doped ZnS Quantum Dots: Structural, Optical, Photoluminescence, Magnetic, and Photocatalytic Properties. J. Supercond. Nov. Magn. 2020, 33, 539–544.spa
dcterms.bibliographicCitation28. Youssef, Z.; Colombeau, L.; Yesmurzayeva, N.; Baros, F.; Vanderesse, R.; Hamieh, T.; Toufaily, J.; Frochot, C.; Roques-Carmes, T.; Acherar, S. Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dye. Pigment. 2018, 159, 49–71.spa
dcterms.bibliographicCitation29. Vallejo, W.; Diaz-Uribe, C.; Cantillo, Á. Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy-phthalocyanines. J. Photochem. Photobiol. A Chem. 2015, 299, 80–86.spa
dcterms.bibliographicCitation30. Vallejo,W.; Rueda, A.; Díaz-Uribe, C.; Grande, C.; Quintana, P. Photocatalytic activity of graphene oxide–TiO2 thin films sensitized by natural dyes extracted from Bactris guineensis. R. Soc. Open Sci. 2019, 6, 181824.spa
dcterms.bibliographicCitation31. Diaz-Uribe, C.; Vallejo,W.; Camargo, G.; Muñoz-Acevedo, A.; Quiñones, C.; Schott, E.; Zarate, X. Potential use of an anthocyanin-rich extract from berries of Vaccinium meridionale Swartz as sensitizer for TiO2 thin films—An experimental and theoretical study. J. Photochem. Photobiol. A Chem. 2019, 384, 112050.spa
dcterms.bibliographicCitation32. Hamid, S.B.A.; Teh, S.J.; Lai, C.W. PhotocatalyticWater Oxidation on ZnO: A Review. Catalysts 2017, 7, 93.spa
dcterms.bibliographicCitation33. Türkyılmaz, ¸S.¸S.; Güy, N.; Özacar, M. Photocatalytic e ciencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic e ect between ZnO and metals. J. Photochem. Photobiol. A Chem. 2017, 341, 39–50.spa
dcterms.bibliographicCitation34. Bouzid, H.; Faisal, M.; Harraz, F.A.; Al-Sayari, S.A.; Ismail, A.A. Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity. Catal. Today 2015, 252, 20–26.spa
dcterms.bibliographicCitation35. Altintas Yildirim, O.; Arslan, H.; Sönmezo˘ glu, S. Facile synthesis of cobalt-doped zinc oxide thin films for highly e cient visible light photocatalysts. Appl. Surf. Sci. 2016, 390, 111–121.spa
dcterms.bibliographicCitation36. Ahmad, M.; Ahmed, E.; Ahmed, W.; Elhissi, A.; Hong, Z.L.; Khalid, N.R. Enhancing visible light responsive photocatalytic activity by decorating Mn-doped ZnO nanoparticles on graphene. Ceram. Int. 2014, 40, 10085–10097.spa
dcterms.bibliographicCitation37. Polat, ˙I.; Yılmaz, S.; Altın, ˙I.; Bacaksız, E.; Sökmen, M. The influence of Cu-doping on structural, optical and photocatalytic properties of ZnO nanorods. Mater. Chem. Phys. 2014, 148, 528–532.spa
dcterms.bibliographicCitation38. Mittal, M.; Sharma, M.; Pandey, O.P. UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method. Sol. Energy 2014, 110, 386–397.spa
dcterms.bibliographicCitation39. Kuriakose, S.; Satpati, B.; Mohapatra, S. Highly e cient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys. Chem. Chem. Phys. 2015, 17, 25172–25181.spa
dcterms.bibliographicCitation40. Thennarasu, G.; Sivasamy, A. Metal ion doped semiconductor metal oxide nanosphere particles prepared by soft chemical method and its visible light photocatalytic activity in degradation of phenol. Powder Technol. 2013, 250, 1–12.spa
dcterms.bibliographicCitation41. Lu, Y.; Lin, Y.; Wang, D.; Wang, L.; Xie, T.; Jiang, T. A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties. Nano Res. 2011, 4, 1144–1152.spa
dcterms.bibliographicCitation42. Kuriakose, S.; Satpati, B.; Mohapatra, S. Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys. Chem. Chem. Phys. 2014, 16, 12741.spa
dcterms.bibliographicCitation43. Poornaprakash, B.; Chalapathi, U.; Subramanyam, K.; Vattikuti, S.V.P.; Park, S.H. Wurtzite phase Co-doped ZnO nanorods: Morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics. Ceram. Int. 2020, 46, 2931–2939.spa
dcterms.bibliographicCitation44. Rajbongshi, B.M.; Samdarshi, S.K. Cobalt-doped zincblende–wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum. Appl. Catal. B Environ. 2014, 144, 435–441.spa
dcterms.bibliographicCitation45. Rajbongshi, B.M.; Samdarshi, S.K. ZnO and Co-ZnO nanorods—Complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux. Mater. Sci. Eng. B 2014, 182, 21–28.spa
dcterms.bibliographicCitation46. Muchuweni, E.; Sathiaraj, T.S.; Nyakotyo, H. Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 2017, 3, e00285.spa
dcterms.bibliographicCitation47. Yuhas, B.D.; Zitoun, D.O.; Pauzauskie, P.J.; He, R.; Yang, P. Transition-Metal Doped Zinc Oxide Nanowires. Angew. Chemie 2006, 118, 434–437.spa
dcterms.bibliographicCitation48. Wang, X.; Sø, L.; Su, R.; Wendt, S.; Hald, P.; Mamakhel, A.; Yang, C.; Huang, Y.; Iversen, B.B.; Besenbacher, F. The influence of crystallite size and crystallinity of anatase nanoparticles on the photo-degradation of phenol. J. Catal. 2014, 310, 100–108.spa
dcterms.bibliographicCitation49. Lima, M.K.; Fernandes, D.M.; Silva, M.F.; Baesso, M.L.; Neto, A.M.; de Morais, G.R.; Nakamura, C.V.; de Oliveira Caleare, A.; Hechenleitner, A.A.W.; Pineda, E.A.G. Co-doped ZnO nanoparticles synthesized by an adapted sol–gel method: E ects on the structural, optical, photocatalytic and antibacterial properties. J. Sol-Gel Sci. Technol. 2014, 72, 301–309.spa
dcterms.bibliographicCitation50. Calleja, J.M.; Cardona, M. Resonant Raman scattering in ZnO. Phys. Rev. B 1977, 16, 3753–3761.spa
dcterms.bibliographicCitation51. Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B.; Callahan, M.J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 165202.spa
dcterms.bibliographicCitation52. Wang, W.; Zhou, Q.; Fei, X.; He, Y.; Zhang, P.; Zhang, G.; Peng, L.; Xie, W. Synthesis of CuO nano- and micro-structures and their Raman spectroscopic studies. CrystEngComm 2010, 12, 2232.spa
dcterms.bibliographicCitation53. Winiarski, J.; Tylus, W.; Szczygieł, B. EIS and XPS investigations on the corrosion mechanism of ternary Zn–Co–Mo alloy coatings in NaCl solution. Appl. Surf. Sci. 2016, 364, 455–466.spa
dcterms.bibliographicCitation54. Xuan, H.; Yao, C.; Hao, X.; Liu, C.; Ren, J.; Zhu, Y.; Xu, C.; Ge, L. Fluorescence enhancement with one-dimensional photonic crystals/nanoscaled ZnO composite thin films. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 497, 251–256.spa
dcterms.bibliographicCitation55. Hasnidawani, J.N.; Azlina, H.N.; Norita, H.; Bonnia, N.N.; Ratim, S.; Ali, E.S. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chem. 2016, 19, 211–216.spa
dcterms.bibliographicCitation56. Pourrahimi, A.M.; Liu, D.; Pallon, L.K.H.; Andersson, R.L.; Martínez Abad, A.; Lagarón, J.-M.; Hedenqvist, M.S.; Ström, V.; Gedde, U.W.; Olsson, R.T. Water-based synthesis and cleaning methods for high purity ZnO nanoparticles–comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Adv. 2014, 4, 35568–35577.spa
dcterms.bibliographicCitation57. Simmons, E.L. Relation of the Di use Reflectance Remission Function to the Fundamental Optical Parameters. Opt. Acta Int. J. Opt. 1972, 19, 845–851.spa
dcterms.bibliographicCitation58. Pal, M.; Pal, U.; Jiménez, J.M.G.Y.; Pérez-Rodríguez, F. E ects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors. Nanoscale Res. Lett. 2012, 7, 1.spa
dcterms.bibliographicCitation59. Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D.P. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi 2015, 252, 1700–1710.spa
dcterms.bibliographicCitation60. Srikant, V.; Clarke, D.R. On the optical band gap of zinc oxide. J. Appl. Phys. 1998, 83, 5447–5451.spa
dcterms.bibliographicCitation61. El-Atab, N.; Chowdhury, F.; Ulusoy, T.G.; Ghobadi, A.; Nazirzadeh, A.; Okyay, A.K.; Nayfeh, A. ~3-nm ZnO Nanoislands Deposition and Application in Charge Trapping Memory Grown by Single ALD Step. Sci. Rep. 2016, 6, 38712.spa
dcterms.bibliographicCitation62. Liu, X.-C.; Shi, E.-W.; Chen, Z.-Z.; Zhang, H.-W.; Song, L.-X.; Wang, H.; Yao, S.-D. Structural, optical and magnetic properties of Co-doped ZnO films. J. Cryst. Growth 2006, 296, 135–140. [spa
dcterms.bibliographicCitation63. Qiu, X.; Li, G.; Sun, X.; Li, L.; Fu, X. Doping e ects of Co 2+ ions on ZnO nanorods and their photocatalytic properties. Nanotechnology 2008, 19, 215703.spa
dcterms.bibliographicCitation64. Ramya, E.; Rao, M.V.; Jyothi, L.; Rao, D.N. Photoluminescence and Nonlinear Optical Properties of Transition Metal (Ag, Ni, Mn) Doped ZnO Nanoparticles. J. Nanosci. Nanotechnol. 2018, 18, 7072–7077.spa
dcterms.bibliographicCitation65. Xu, H.; Shi, M.; Liang, C.;Wang, S.; Xia, C.; Xue, C.; Hai, Z.; Zhuiykov, S. E ect of Zinc Acetate Concentration on Optimization of Photocatalytic Activity of p-Co3O4/n-ZnO Heterostructures. Nanoscale Res. Lett. 2018, 13, 195.spa
dcterms.bibliographicCitation66. Konstantinou, I.K.; Albanis, T.A. TiO2—Assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations A review. Appl. Catal. B Environ. 2004, 49, 1–14.spa
dcterms.bibliographicCitation67. Jayswal, S.; Moirangthem, R.S. Construction of a solar spectrum active SnS/ZnO p–n heterojunction as a highly e cient photocatalyst: The e ect of the sensitization process on its performance. New J. Chem. 2018, 42, 13689–13701.spa
dcterms.bibliographicCitation68. Jun Park, S.; Sankar Das, G.; Schütt, F.; Adelung, R.; Kumar Mishra, Y.; Malika Tripathi, K.; Kim, T. Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: Degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. Asia Mater. 2019, 11, 1–13.spa
dcterms.bibliographicCitation69. Vallejo, W.; Cantillo, A.; Dias-Uribe, C. Methylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Films. Int. J. Photoenergy 2020, 2020, 112.spa
dcterms.bibliographicCitation70. Prasad, C.; Tang, H.; Liu, Q.Q.; Zulfiqar, S.; Shah, S.; Bahadur, I. An overview of semiconductors/layered double hydroxides composites: Properties, synthesis, photocatalytic and photoelectrochemical applications. J. Mol. Liq. 2019, 289, 111114.spa
dcterms.bibliographicCitation71. Hernández-Alonso, M.D.; Fresno, F.; Suárez, S.; Coronado, J.M. Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy Environ. Sci. 2009, 2, 1231–1257.spa
dcterms.bibliographicCitation72. Pérez, J.A.; Gallego, J.L.; Wilson Stiven Roman, H.R.L. Zinc Oxide Nanostructured Thin Films. Sci. Tech. 2008, 39, 416–421.spa
dcterms.bibliographicCitation73. Ramírez Vinasco, D.; Vera, L.; Patricia, L.; Riascos Landázuri, H. Zn1-xMnxO Thin Films. Sci. Tech. 2009, 41, 273–278.spa
dcterms.bibliographicCitation74. Quiñones, C.; Ayala, J.; Vallejo, W. Methylene blue photoelectrodegradation under UV irradiation on Au/Pd-modified TiO2 films. Appl. Surf. Sci. 2010, 257, 367–371.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/catal10050528
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsthin films; ZnO; doping; heterogeneous photocatalysisspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por