Mostrar el registro sencillo del ítem

dc.contributor.authorDiaz-Uribe, Carlos
dc.contributor.otherVallejo, William
dc.contributor.otherRomero, Eduardo
dc.contributor.otherVillareal, M.
dc.contributor.otherPadilla, M.
dc.contributor.otherHazbun, N.
dc.contributor.otherMunoz-Acevedo, Amner
dc.contributor.otherSchott, Eduardo
dc.contributor.otherZarate, Ximena
dc.date.accessioned2022-11-15T21:22:26Z
dc.date.available2022-11-15T21:22:26Z
dc.date.issued2020-03-11
dc.date.submitted2019-11-26
dc.identifier.urihttps://hdl.handle.net/20.500.12834/984
dc.description.abstractTiO2 thin films, sensitized by an anthocyanins-rich extract of a common species found in the Colombian Caribbean region (Bactris guineensis fruits), were used for the photocatalytic degradation of methylene blue. The sensitization process was verified by diffuse reflectance spectroscopy (DRS). The qualitative and quantitative analyses of the anthocyanins were carried out using highperformance liquid chromatography with photodiode array detection (HPLC-DAD), which provided the total content anthocyanin equivalent to delphinidin chloride (TAEDC) per mL of the extract, of 10.0 ± 0.8 mg TAEDC/mL. Here, three main anthocyanins were identified, being cyanidin-3-rutinoside the most abundant constituent (ca. 76%). The interaction of the dyes with a TiO2 slab model and their adsorption energies were determined through computational simulations. In addition, the molecular modelling evidenced that the sensitization of the semiconductor improved the light absorption in the visible range of the spectrum. As a final point, the photocatalytic test showed that the photocatalytic activity increased 26% for TiO2/B. guineensis thin films under visible radiation respect to bare TiO2.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceElsevier B.V.spa
dc.titleTiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT studyspa
dcterms.bibliographicCitation[1] S.A. Ansari, M.H. Cho, Growth of three-dimensional flowerlike SnS2 on g-C3N4 sheets as an efficient visible-light photocatalyst, photoelectrode, and electrochemical supercapacitance material, Sustain. Energy Fuels. 1 (2017) 510–519, https://doi.org/10.1039/c6se00049e.spa
dcterms.bibliographicCitation[2] S.A. Ansari, S.G. Ansari, H. Foaud, M.H. Cho, Facile and sustainable synthesis of carbon-doped ZnO nanostructures towards the superior visible light photocatalytic performance, New J. Chem. 41 (2017) 9314–9320, https://doi.org/10.1039/ c6nj04070e.spa
dcterms.bibliographicCitation[3] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO 2 Photocatalysis: mechanisms and materials, Chem. Rev. 114 (2014) 9919–9986, https://doi.org/10.1021/cr5001892.spa
dcterms.bibliographicCitation[4] A. Ayati, A. Ahmadpour, F.F. Bamoharram, B. Tanhaei, M. Ma¨ ntta¨ ri, M. Sillanpa¨ a¨ , A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant, Chemosphere 107 (2014) 163–174, https://doi.org/10.1016/J. CHEMOSPHERE.2014.01.040.spa
dcterms.bibliographicCitation[5] S. Khameneh Asl, M. Kianpour Rad, S.K. Sadrnezhaad, M.R. Vaezi, The effect of microstructure on the photocatalytic properties of TiO2, Adv. Mater. Res. 264–265 (2011) 1340– 1345, https://doi.org/10.4028/www.scientific.net/AMR.264- 265.1340.spa
dcterms.bibliographicCitation[6] T. Dikici, M. Toparli, Microstructure and mechanical properties of nanostructured and microstructured TiO2 films, Mater. Sci. Eng. A. 661 (2016) 19–24, https://doi.org/10.1016/J. MSEA.2016.03.023.spa
dcterms.bibliographicCitation[7] C. Diaz-Uribe, W. Vallejo, W. Ramos, Methylene blue photocatalytic mineralization under visible irradiation on TiO2 thin films doped with chromium, Appl. Surf. Sci. 319 (2014) 121–127, https://doi.org/10.1016/J.APSUSC.2014.06.157.spa
dcterms.bibliographicCitation[8] M. Humayun, F. Raziq, A. Khan, W. Luo, W. Luo, Modification strategies of TiO 2 for potential applications in photocatalysis: a critical review, Green Chem. Lett. Rev. 11 (2018) 86–102, https://doi.org/10.1080/17518253.2018.1440324.spa
dcterms.bibliographicCitation[9] A. Kotta, S.A. Ansari, N. Parveen, H. Fouad, O.Y. Alothman, U. Khaled, H.K. Seo, S.G. Ansari, Z.A. Ansari, Mechanochemical synthesis of melamine doped TiO2 nanoparticles for dye sensitized solar cells application, J. Mater. Sci. Mater. Electron. 29 (2018) 9108–9116, https://doi. org/10.1007/s10854-018-8938-y.spa
dcterms.bibliographicCitation[10] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ. 125 (2012) 331–349, https://doi.org/10.1016/J. APCATB.2012.05.036.spa
dcterms.bibliographicCitation[11] C. Dı´az-Uribe, J. Viloria, L. Cervantes, W. Vallejo, K. Navarro, E. Romero, C. Quin˜ ones, Photocatalytic Activity of Ag-TiO 2 Composites Deposited by Photoreduction under UV Irradiation, Int. J. Photoenergy. 2018 (2018) 1–8, https://doi. org/10.1155/2018/6080432.spa
dcterms.bibliographicCitation[12] O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, J. Photochem. Photobiol. C Photochem. Rev. 24 (2015) 16–42, https://doi.org/10.1016/J.JPHOTOCHEMREV.2015.06.001.spa
dcterms.bibliographicCitation[13] Z. Wang, X. Lang, Visible light photocatalysis of dye-sensitized TiO2: The selective aerobic oxidation of amines to imines, Appl. Catal. B Environ. 224 (2018) 404–409, https://doi.org/10.1016/J. APCATB.2017.10.002.spa
dcterms.bibliographicCitation[14] W. Vallejo, C. Diaz-Uribe, A ´ . Cantillo, Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxyphthalocyanines, J. Photochem. Photobiol. A Chem. 299 (2015) 80–86, https://doi.org/10.1016/J. JPHOTOCHEM.2014.11.009.spa
dcterms.bibliographicCitation[15] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: A review, Adv. Colloid Interface Sci. 209 (2014) 172–184, https://doi.org/ 10.1016/J.CIS.2014.04.002.spa
dcterms.bibliographicCitation[16] W. Maiaugree, S. Lowpa, M. Towannang, P. Rutphonsan, A. Tangtrakarn, S. Pimanpang, P. Maiaugree, N. Ratchapolthavisin, W. Sang-Aroon, W. Jarernboon, V. Amornkitbamrung, A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste, Sci. Rep. 5 15230 (2015), https://doi.org/10.1038/ srep15230.spa
dcterms.bibliographicCitation[17] H. Yang, L. Jiang, Y. Li, G. Li, Y. Yang, J. He, J. Wang, Z. Yan, H. Yang, L. Jiang, Y. Li, G. Li, Y. Yang, J. He, J. Wang, Z. Yan, Highly efficient red cabbage anthocyanin inserted TiO2 aerogel nanocomposites for photocatalytic reduction of Cr(VI) under visible light, Nanomaterials 8 (2018) 937, https://doi.org/ 10.3390/nano8110937.spa
dcterms.bibliographicCitation[18] C. Dı´az-Uribe, W. Vallejo, K. Campos, W. Solano, J. Andrade, A. Mun˜ oz-Acevedo, E. Schott, X. Zarate, Improvement of the photocatalytic activity of TiO2 using Colombian Caribbean species (Syzygium cumini) as natural sensitizers: Experimental and theoretical studies, Dye. Pigment. 150 (2018) 370–376, https://doi.org/10.1016/J.DYEPIG.2017.12.027.spa
dcterms.bibliographicCitation[19] C. Osorio, J.G. Carriazo, O. Almanza, Antioxidant activity of corozo (Bactris guineensis) fruit by electron paramagnetic resonance (EPR) spectroscopy, Eur. Food Res. Technol. 233 (2011) 103–108, https://doi.org/10.1007/s00217-011-1499-4.spa
dcterms.bibliographicCitation[20] M.B. Rojano, I. Isabel, C. Zapata, C. Farid, B. Cortes, Anthocyanin stability and the oxygen radical absorbance capacity (ORAC) values of Corozo aqueous extracts (Bactris guineensis), 2012. http://scielo.sld.cu (accessed May 13, 2019).spa
dcterms.bibliographicCitation[21] C. Diaz-Uribe, W. Vallejo, G. Camargo, A. Mun˜ oz-Acevedo, C. Quin˜ ones, E. Schott, X. Zarate, Potential use of an anthocyaninrich extract from berries of Vaccinium meridionale Swartz as sensitizer for TiO2 thin films – An experimental and theoretical study, J. Photochem. Photobiol. A Chem. 384 (2019), https:// doi.org/10.1016/J.JPHOTOCHEM.2019.112050 112050spa
dcterms.bibliographicCitation[22] C. Quin˜ ones, J. Ayala, W. Vallejo, Methylene blue photoelectrodegradation under UV irradiation on Au/Pdmodified TiO2 films, Appl. Surf. Sci. 257 (2010) 367–371, https://doi.org/10.1016/J.APSUSC.2010.06.079.spa
dcterms.bibliographicCitation[23] A.I. Kontos, A.G. Kontos, D.S. Tsoukleris, M.-C. Bernard, N. Spyrellis, P. Falaras, Nanostructured TiO2 films for DSSCS prepared by combining doctor-blade and sol–gel techniques, J. Mater. Process. Technol. 196 (2008) 243–248, https://doi.org/ 10.1016/J.JMATPROTEC.2007.05.051.spa
dcterms.bibliographicCitation[24] T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange– correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett. 393 (2004) 51–57, https:// doi.org/10.1016/j.cplett.2004.06.011.spa
dcterms.bibliographicCitation[25] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1985) 270–283, https://doi.org/ 10.1063/1.448799.spa
dcterms.bibliographicCitation[26] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys. 82 (1985) 299–310, https://doi.org/10.1063/1.448975.spa
dcterms.bibliographicCitation[27] W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys. 82 (1985) 284–298, https://doi.org/10.1063/ 1.448800.spa
dcterms.bibliographicCitation[28] H. Horbowicz, M. Kosson, R. Grzesiuk, A. Debski, Anthocyanins of fruits and vegetables-their occurrence, analysis and role in human nutrition, Veg. Crop. Res. Bull. 68 (2008) 5–22, https://doi.org/10.2478/v10032-008-0001-8.spa
dcterms.bibliographicCitation[29] X. Zarate, S. Schott-Verdugo, A. Rodriguez-Serrano, E. Schott, The nature of the donor motif in acceptor-bridge-donor dyes as an influence in the electron photo-injection mechanism in DSSCs, J. Phys. Chem. A. 120 (2016) 1613–1624, https://doi. org/10.1021/acs.jpca.5b12215.spa
dcterms.bibliographicCitation[30] X. Zarate, M. Saavedra-Torres, A. Rodriguez-Serrano, T. Gomez, E. Schott, Exploring the relevance of thiophene rings as bridge unit in acceptor-bridge-donor dyes on self-aggregation and performance in DSSCs, J. Comput. Chem. 39 (2018) 685– 698, https://doi.org/10.1002/jcc.25136.spa
dcterms.bibliographicCitation[31] X. Zarate, F. Claveria-Cadiz, D. Arias-Olivares, A. Rodriguez- Serrano, N. Inostroza, E. Schott, Effects of the acceptor unit in dyes with acceptor–bridge–donor architecture on the electron photo-injection mechanism and aggregation in DSSCs, Phys. Chem. Chem. Phys. 18 (2016) 24239–24251, https://doi.org/ 10.1039/C6CP04662B.spa
dcterms.bibliographicCitation[32] W. Sang-aroon, S. Saekow, V. Amornkitbamrung, Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells, J. Photochem. Photobiol. A Chem. 236 (2012) 35–40, https://doi. org/10.1016/J.JPHOTOCHEM.2012.03.014.spa
dcterms.bibliographicCitation[33] T. Gomez, F. Jaramillo, E. Schott, R. Arratia-Pe´rez, X. Zarate, Simulation of natural dyes adsorbed on TiO2 for photovoltaic applications, Sol. Energy. 142 (2017) 215–223, https://doi.org/ 10.1016/J.SOLENER.2016.12.023.spa
dcterms.bibliographicCitation[34] C. Osorio, B. Acevedo, S. Hillebrand, J. Carriazo, P. Winterhalter, A.L. Morales, Microencapsulation by spraydrying of anthocyanin pigments from Corozo (Bactris guineensis) fruit, J. Agric. Food Chem. 58 (2010) 6977–6985, https://doi.org/10.1021/jf100536g.spa
dcterms.bibliographicCitation[35] E. Corradini, P. Foglia, P. Giansanti, R. Gubbiotti, R. Samperi, A. Lagana` , Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants, Nat. Prod. Res. 25 (2011) 469–495, https://doi.org/ 10.1080/14786419.2010.482054.spa
dcterms.bibliographicCitation[36] L.M. Sikhwivhilu, S. Sinha Ray, N.J. Coville, Influence of bases on hydrothermal synthesis of titanate nanostructures, Appl. Phys. A. 94 (2009) 963–973, https://doi.org/10.1007/s00339-008- 4877-4.spa
dcterms.bibliographicCitation[37] Y. Park, W. Kim, D. Monllor-Satoca, T. Tachikawa, T. Majima, W. Choi, Role of interparticle charge transfers in agglomerated photocatalyst nanoparticles: demonstration in aqueous suspension of dye-sensitized TiO2, J. Phys. Chem. Lett. 4 (2013) 189–194, https://doi.org/10.1021/jz301881d.spa
dcterms.bibliographicCitation[38] K.T. Ahliha A, F. Nurosyid, A. Supriyanto, Optical properties of anthocyanin dyes on TiO 2 as photosensitizers for application of dye-sensitized solar cell (DSSC) Related content, IOP Conf. Ser, Mater. Sci. Eng. 33 (2018), https://doi.org/10.1088/1757- 899X/333/1/012018 012018.spa
dcterms.bibliographicCitation[39] P.I.E.L.U. Okoli, J.O. Ozuomba, A.J. Ekpunobi, Anthocyanindyed TiO2 electrode and its performance on dye-sensitized solar cell, Res. J. Recent Sci. 1 (2012) 22–27 (accessed September 30, 2018) http://www.isca.in/rjrs/archive/v1/i5/4.ISCA-RJRS-2012- 73.php.spa
dcterms.bibliographicCitation[40] E.L. Simmons, Relation of the diffuse reflectance remission function to the fundamental optical parameters, Opt. Acta Int. J. Opt. 19 (1972) 845–851, https://doi.org/10.1080/713818505.spa
dcterms.bibliographicCitation[41] B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system, Phys. Status Solidi. 252 (2015) 1700–1710, https://doi.org/10.1002/pssb.201552007.spa
dcterms.bibliographicCitation[42] K. Madhusudan Reddy, S.V. Manorama, A. Ramachandra Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys. 78 (2003) 239–245, https:// doi.org/10.1016/S0254-0584(02)00343-7.spa
dcterms.bibliographicCitation[43] Z. Youssef, L. Colombeau, N. Yesmurzayeva, F. Baros, R. Vanderesse, T. Hamieh, J. Toufaily, C. Frochot, T. Roques- Carmes, S. Acherar, Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification, Dye. Pigment. 159 (2018) 49–71, https://doi.org/10.1016/J.DYEPIG.2018.06.002.spa
dcterms.bibliographicCitation[44] K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum yields of active oxidative species formed on TiO2 photocatalyst, J. Photochem. Photobiol. A Chem. 134 (2000) 139–142, https://doi.org/10.1016/S1010-6030(00)00264-1.spa
dcterms.bibliographicCitation[45] H. Hug, M. Bader, P. Mair, T. Glatzel, Biophotovoltaics: Natural pigments in dye-sensitized solar cells, Appl. Energy. 115 (2014) 216–225, https://doi.org/10.1016/J. APENERGY.2013.10.055.spa
dcterms.bibliographicCitation[46] S. Shalini, R. Balasundaraprabhu, T.S. Kumar, N. Prabavathy, S. Senthilarasu, S. Prasanna, Status and outlook of sensitizers/ dyes used in dye sensitized solar cells (DSSC): a review, Int. J. Energy Res. 40 (2016) 1303–1320, https://doi.org/10.1002/ er.3538.spa
dcterms.bibliographicCitation[47] S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dyesensitized solar cells: Progress and future challenges, Energy Environ. Sci. 6 (2013) 1443–1464, https://doi.org/10.1039/ c3ee24453a.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.jscs.2020.03.004
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsTiO2; Natural sensitizer; Anthocyanin; DFTspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineQuímicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por