Mostrar el registro sencillo del ítem
Thermodynamic, Exergy and Environmental Impact Assessment of S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle
dc.contributor.author | Espinel Blanco, Edwin | |
dc.contributor.other | Valencia Ochoa, Guillermo | |
dc.contributor.other | Duarte Forero, Jorge | |
dc.date.accessioned | 2022-11-15T21:19:38Z | |
dc.date.available | 2022-11-15T21:19:38Z | |
dc.date.issued | 2020-05-04 | |
dc.date.submitted | 2020-03-22 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/976 | |
dc.description.abstract | In this article, a thermodynamic, exergy, and environmental impact assessment was carried out on a Brayton S-CO2 cycle coupled with an organic Rankine cycle (ORC) as a bottoming cycle to evaluate performance parameters and potential environmental impacts of the combined system. The performance variables studied were the net power, thermal and exergetic e ciency, and the brake-specific fuel consumption (BSFC) as a function of the variation in turbine inlet temperature (TIT) and high pressure (PHIGH), which are relevant operation parameters from the Brayton S-CO2 cycle. The results showed that the main turbine (T1) and secondary turbine (T2) of the Brayton S-CO2 cycle presented higher exergetic e ciencies (97%), and a better thermal and exergetic behavior compared to the other components of the System. Concerning exergy destruction, it was found that the heat exchangers of the system presented the highest exergy destruction as a consequence of the large mean temperature di erence between the carbon dioxide, thermal oil, and organic fluid, and thus this equipment presents the greatest heat transfer irreversibilities of the system. Also, through the Life Cycle Analysis, the potential environmental impact of the system was evaluated to propose a thermal design according to the sustainable development goals. Therefore, it was obtained that T1 was the component with a more significant environmental impact, with a maximum value of 4416 Pts when copper is selected as the equipment material. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | MDPI AG | spa |
dc.title | Thermodynamic, Exergy and Environmental Impact Assessment of S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle | spa |
dcterms.bibliographicCitation | 1. Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum power from fluid flow by applying the first and second laws of thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903. | spa |
dcterms.bibliographicCitation | 2. Ramírez, R.; Gutiérrez, A.S.; Eras, J.J.C.; Valencia, K.; Hernández, B.; Forero, J.D. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 2019, 241, 118412. | spa |
dcterms.bibliographicCitation | 3. Angelino, G. Carbon Dioxide Condensation Cycles. J. Eneg. Power 1968, 287–295. | spa |
dcterms.bibliographicCitation | 4. Dostal, V.; Driscoll, M.J.; Hejzlar, P.A. Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, UK, March 2004. | spa |
dcterms.bibliographicCitation | 5. Abrosimov, K.A.; Baccioli, A.; Bischi, A. Techno-economic analysis of combined inverted Brayton—Organic Rankine cycle for high-temperature waste heat recovery. Energy Convers. Manag. X 2019, 3, 100014. | spa |
dcterms.bibliographicCitation | 6. Guo, Z.; Zhao, Y.; Zhu, Y.; Niu, F.; Lu, D. Optimal design of supercritical CO2 power cycle for next generation nuclear power conversion systems. Prog. Nucl. Energy 2018, 108, 111–121. | spa |
dcterms.bibliographicCitation | 7. Padilla, R.V.; Soo Too, Y.C.; Benito, R.; Stein, W. Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Appl. Energy 2015, 148, 348–365. | spa |
dcterms.bibliographicCitation | 8. Padilla, R.V.; Benito, R.G.; Stein,W. An Exergy Analysis of Recompression Supercritical CO2 Cycles with and without Reheating. Energy Procedia 2015, 69, 1181–1191. | spa |
dcterms.bibliographicCitation | 9. Glatzmaier, G.C.; Turchi, C.S. Supercritical CO2 as a Heat Transfer and Power Cycle Fluid for CSP Systems. In Proceedings of the ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences, San Francisco, CA, USA, 19–23 July 2009; pp. 673–676. | spa |
dcterms.bibliographicCitation | 10. Hinze, J.F.; Nellis, G.F.; Anderson, M.H. Cost comparison of printed circuit heat exchanger to low cost periodic flow regenerator for use as recuperator in a s-CO2 Brayton cycle. Appl. Energy 2017, 208, 1150–1161. | spa |
dcterms.bibliographicCitation | 11. Sharan, P.; Neises, T.; Turchi, C. Thermal desalination via supercritical CO2 Brayton cycle: Optimal system design and techno-economic analysis without reduction in cycle e ciency. Appl. Ther. Eng. 2019, 152, 499–514. | spa |
dcterms.bibliographicCitation | 12. Park, J.H.; Park, H.S.; Kwon, J.G.; Kim, T.H.; Kim, M.H. Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors. Energy 2018, 160, 520–535. | spa |
dcterms.bibliographicCitation | 13. Li, H.; Zhang, Y.; Zhang, L.; Yao, M.; Kruizenga, A.; Anderson, M. PDF-based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle. Int. J. Heat Mass Transf. 2016, 98, 204–218. | spa |
dcterms.bibliographicCitation | 14. Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO 2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. | spa |
dcterms.bibliographicCitation | 15. Musgrove, G.; Sullivan, S.; Shiferaw, D.; Fourspring, P. Heat exchangers. In Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 217–244. | spa |
dcterms.bibliographicCitation | 16. Jiang, Y.; Liese, E.; Zitney, S.E.; Bhattacharyya, D. Optimal design of microtube recuperators for an indirect supercritical carbon dioxide recompression closed Brayton cycle. Appl. Energy 2018, 216, 634–648. | spa |
dcterms.bibliographicCitation | 17. Jiang, Y.; Liese, E.; Zitney, S.E.; Bhattacharyya, D. Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles. Appl. Energy 2018, 231, 1019–1032. | spa |
dcterms.bibliographicCitation | 18. Chen, J.; Liu, Y.; Lu, X.; Ji, X.;Wang, C. Designing heat exchanger for enhancing heat transfer of slurries in biogas plants. Energy Procedia 2019, 158, 1288–1293. | spa |
dcterms.bibliographicCitation | 19. Pidaparti, S.R.; Anderson, M.H.; Ranjan, D. Experimental Investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for Supercritical CO2 power cycles. Exp. Ther. Fluid Sci. 2019, 106, 119–129. | spa |
dcterms.bibliographicCitation | 20. Colonna, P.; van Putten, H. Dynamic modeling of steam power cycles. Part I-Modeling paradigm and validation. Appl. Ther. Eng. 2007, 27, 467–480. | spa |
dcterms.bibliographicCitation | 21. Van Putten, H.; Colonna, P. Dynamic modeling of steam power cycles: Part II—Simulation of a small simple Rankine cycle system. Appl. Ther. Eng. 2007, 27, 2566–2582. | spa |
dcterms.bibliographicCitation | 22. Chien, N.B.; Jong-Taek, O.; Asano, H.; Tomiyama, Y. Investigation of experiment and simulation of a plate heat exchanger. Energy Procedia 2019, 158, 5635–5640. | spa |
dcterms.bibliographicCitation | 23. Liu, Y.; Wang, Y.; Huang, D. Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy 2019, 189, 115900. | spa |
dcterms.bibliographicCitation | 24. Mohammadkhani, F.; Shokati, N.; Mahmoudi, S.M.S.; Yari, M.; Rosen, M.A. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles. Energy 2014, 65, 533–543. | spa |
dcterms.bibliographicCitation | 25. Turchi, C.S.; Ma, Z.; Neises, T.; Wagner, M. Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for High Performance Concentrating Solar Power Systems. In Proceedings of the ASME 2012 6th International Conference on Energy Sustainability Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology, San Diego, CA, USA, 23–26 July 2012; pp. 375–383. | spa |
dcterms.bibliographicCitation | 26. Le Moullec, Y. Conceptual study of a high e ciency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle. Energy 2013, 49, 32–46. | spa |
dcterms.bibliographicCitation | 27. Olumayegun, O.;Wang, M.; Oko, E. Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture. Energy 2019, 166, 1074–1088. | spa |
dcterms.bibliographicCitation | 28. Liang, Y.; Bian, X.; Qian, W.; Pan, M.; Ban, Z.; Yu, Z. Theoretical analysis of a regenerative supercritical carbon dioxide Brayton cycle/organic Rankine cycle dual loop for waste heat recovery of a diesel/natural gas dual-fuel engine. Energy Convers. Manag. 2019, 197, 111845. | spa |
dcterms.bibliographicCitation | 29. Kao, S.; Gibbs, J.; Hejzlar, P. Dynamic Simulation and Control of a Supercritical CO2 Power Conversion System for Small LightWater Reactor Applications. In Proceedings of the Supercritical CO2 Power Cycle Symposium, Troy, NY, USA, 29–30 April 2009. | spa |
dcterms.bibliographicCitation | 30. Uusitalo, A.; Ameli, A.; Turunen-Saaresti, T. Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery. Energy 2019, 167, 60–79. | spa |
dcterms.bibliographicCitation | 31. Danieli, P.; Rech, S.; Lazzaretto, A. Supercritical CO2 and air Brayton-Joule versus ORC systems for heat recovery from glass furnaces: Performance and economic evaluation. Energy 2019, 168, 295–309. | spa |
dcterms.bibliographicCitation | 32. Thakar, R.; Bhosle, S.; Lahane, S. Design of Heat Exchanger forWaste Heat Recovery from Exhaust Gas of Diesel Engine. Procedia Manuf. 2018, 20, 372–376. | spa |
dcterms.bibliographicCitation | 33. Valencia, G.; Isaza-Roldan, C.; Forero, J. Economic and Exergo-Advance Analysis of a Waste Heat Recovery System based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317. | spa |
dcterms.bibliographicCitation | 34. Ochoa, G.V.; Peñaloza, C.A.; Forero, J.D. Thermo-economic assessment of a gas microturbine-absorption chiller trigeneration system under di erent compressor inlet air temperatures. Energies 2019, 12, 4643. | spa |
dcterms.bibliographicCitation | 35. Valencia, G.; Peñaloza, C.; Rojas, J. Thermoeconomic Modelling and Parametric Study of a Simple ORC for the Recovery ofWaste Heat in a 2 MW Gas Engine under Di erentWorking Fluids. Appl. Sci. 2019, 9, 4017. | spa |
dcterms.bibliographicCitation | 36. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700. | spa |
dcterms.bibliographicCitation | 37. Fan, W.; Han, Z.; Li, P.; Jia, Y. Analysis of the thermodynamic performance of the organic Rankine cycle (ORC) based on the characteristic parameters of the working fluid and criterion for working fluid selection. Energy Convers. Manag. 2020, 211, 112746. | spa |
dcterms.bibliographicCitation | 38. Iso, T.; Standards, I. Environmental Management The ISO 14000 Family of International Standards ISO in Brief ISO and the Environment; International Organization for Standardization: Geneva, Switzerland, 2009. | spa |
dcterms.bibliographicCitation | 39. Valencia Ochoa, G.; Cárdenas Gutierrez, J.; Duarte Forero, J. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resource 2020, 9, 2. | spa |
dcterms.bibliographicCitation | 40. Michos, C.N.; Lion, S.; Vlaskos, I.; Taccani, R. Analysis of the backpressure e ect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications. Energy Convers. Manag. 2017, 132, 347–360. | spa |
dcterms.bibliographicCitation | 41. ASHRAE. ANSI/ASHRAE Standard 62.1-2010. Ventilation for Acceptable Indoor Air Quality, 62nd ed.; American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2010. | spa |
dcterms.bibliographicCitation | 42. Ke, H.; Xiao, Q.; Cao, Y.; Ma, T.; Lin, Y.; Zeng, M.; Wang, Q. Simulation of the printed circuit heat exchanger for S-CO2 by segmented methods. Energy Procedia 2017, 142, 4098–4103. | spa |
dcterms.bibliographicCitation | 43. Ding, Y.; Liu, C.; Zhang, C.; Xu, X.; Li, Q.; Mao, L. Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid. Energy 2018, 145, 52–64. | spa |
dcterms.bibliographicCitation | 44. Valencia Ochoa, G.; Piero Rojas, J.; Duarte Forero, J. Advance Exergo-Economic Analysis of aWaste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267. | spa |
dcterms.bibliographicCitation | 45. Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic Analysis of Di erent ExhaustWaste-Heat Recovery Systems for Natural Gas Engine Based on ORC. Appl. Sci. 2019, 9, 4017. | spa |
dcterms.bibliographicCitation | 46. Valencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermoeconomic optimization with PSO Algorithm of waste heat recovery systems based on Organic Rankine Cycle system for a natural gas engine. Energies 2019, 12, 4165. | spa |
dcterms.bibliographicCitation | 47. Preißinger, M.; Brüggemann, D. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities. Energies 2017, 10, 269. | spa |
dcterms.bibliographicCitation | 48. Tchanche, B.; Lambrinos, G.; Frangoudakis, A.; Papadakis, G. Low-grade heat conversion into power using organic Rankine cycles-A review of various applications. Renew. Sustain. Energy Rev. 2011, 15, 3963–3979. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/en13092259 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Brayton; environmental impact; exergy; life cycle analysis; ORC; performance parameters | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |