Mostrar el registro sencillo del ítem

dc.contributor.authorDomınguez More, Gina Paola
dc.contributor.otherFeltrin, Clarissa
dc.contributor.otherFreire Brambila, Paula
dc.contributor.otherCardona, Maria Isabel
dc.contributor.otherEcheverry, Sandra Milena
dc.contributor.otherOliveira Simoes, Claudia Maria
dc.contributor.otherAragon, Diana Marcela
dc.date.accessioned2022-11-15T21:19:10Z
dc.date.available2022-11-15T21:19:10Z
dc.date.issued2020-02-09
dc.date.submitted2019-08-07
dc.identifier.urihttps://hdl.handle.net/20.500.12834/974
dc.description.abstractObjectives The Biopharmaceutics Classification System (BCS) categorizes active pharmaceutical ingredients according to their solubility and permeability properties, which are susceptible to matrix or formulation effects. The aim of this research was to evaluate the matrix effects of a hydroethanolic extract of calyces from Physalis peruviana L. (HEE) and its butanol fraction (BF), on the biopharmaceutics classification of their major compound, quercetin-3-O-rutinoside (rutin, RU). Methods Rutin was quantified by HPLC-UV, and Caco-2 cell monolayer transport studies were performed to obtain the apparent permeability values (Papp). Aqueous solubility was determined at pH 6.8 and 7.4. Key findings The Papp values followed this order: BF > HEE > RU (1.77 0.02 > 1.53 0.07 > 0.90 0.03 9 10 5 cm/s). The lowest solubility values followed this order: HEE > RU > BF (2.988 0.07 > 0.205 0.002 > 0.189 0.005 mg/ml). Conclusions According to these results, rutin could be classified as BCS classes III (high solubility/low permeability) and IV (low solubility/low permeability), depending on the plant matrix. Further work needs to be done in order to establish how apply the BCS for research and development of new botanical drugs or for bioequivalence purposes.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceBlackwell Publishing Ltdspa
dc.titleMatrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutinspa
dcterms.bibliographicCitation1. Guidance for Industry. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. Silver Spring, MD: CDER/FDA, 2017.spa
dcterms.bibliographicCitation2. Ku MS. Use of the biopharmaceutical classification system in early drug development. AAPS J 2008; 10: 208– 212.spa
dcterms.bibliographicCitation3. Amidon GL et al. A Theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995; 12: 413–420.spa
dcterms.bibliographicCitation4. Broccatelli F et al. BDDCS class prediction for new molecular entities. Mol Pharm 2012; 9: 570–580.spa
dcterms.bibliographicCitation5. Mamadou G et al. Increased intestinal permeation and modulation of presystemic metabolism of resveratrol formulated into self-emulsifying drug delivery systems. Int J Pharm 2017; 521: 150–155.spa
dcterms.bibliographicCitation6. Li X et al. Improvement of intestinal absorption of curcumin by cyclodextrins and the mechanisms underlying absorption enhancement. Int J Pharm 2018; 535: 340–349.spa
dcterms.bibliographicCitation7. Waldmann S et al. Provisional biopharmaceutical classification of some common herbs used in western medicine. Mol Pharm 2012; 9: 815–822.spa
dcterms.bibliographicCitation8. Fong SYK et al. Establishing the pharmaceutical quality of Chinese herbal medicine: a provisional BCS classification. Mol Pharm 2013; 10: 1623.spa
dcterms.bibliographicCitation9. P erez-S anchez A et al. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers. PLoS ONE 2017; 12: e0172063.spa
dcterms.bibliographicCitation10. Li H et al. Establishment of modified biopharmaceutics classification system absorption model for oral Traditional Chinese Medicine (Sanye Tablet). J Ethnopharmacol 2019; 244: 112148.spa
dcterms.bibliographicCitation11. Cao X et al. Analysis of five active ingredients of Er-Zhi-Wan, a traditional Chinese medicine water-honeyed pill, using the biopharmaceutics classification system. Biomed Chromatogr 2020; 34: e4757.spa
dcterms.bibliographicCitation12. Gao S et al. Highly variable contents of phenolics in St John’s wort products impact their transport in the human intestinal Caco-2 cell model: pharmaceutical and biopharmaceutical rationale for product standardization. J Agric Food Chem 2010; 58: 6650– 6659.spa
dcterms.bibliographicCitation13. Rasoanaivo P et al. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J 2011; 10: S4.spa
dcterms.bibliographicCitation14. Yang Y et al. Synergy effects of herb extracts: pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014; 92: 133–147.spa
dcterms.bibliographicCitation15. Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 2002; 42: 620–643.spa
dcterms.bibliographicCitation16. Li Y et al. In vivo pharmacokinetics comparisons of icariin, emodin and psoralen from Gan-kang granules and extracts of Herba Epimedii, Nepal dock root, Ficus hirta yahl. J Ethnopharmacol 2009; 124: 522–529.spa
dcterms.bibliographicCitation17. Kammalla AK et al. Comparative pharmacokinetic interactions of quercetin and rutin in rats after oral administration of European patented formulation containing Hipphophae rhamnoides and co-administration of quercetin and rutin. Eur J Drug Metab Pharmacokinet 2015; 40: 277–284.spa
dcterms.bibliographicCitation18. Chua LS. A review on plant-based rutin extraction methods and its pharmacological activities. J Ethnopharmacol 2013; 150: 805–817.spa
dcterms.bibliographicCitation19. Gull on B et al. Rutin: a review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol 2017; 67: 220–235.spa
dcterms.bibliographicCitation20. Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J 2017; 25: 149–164.spa
dcterms.bibliographicCitation21. Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother 2017; 96: 305– 312.spa
dcterms.bibliographicCitation22. Enogieru AB et al. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid Med Cell Longev 2018; 2018: 6241017.spa
dcterms.bibliographicCitation23. Luca SV et al. Bioactivity of dietary polyphenols: the role of metabolites. Crit Rev Food Sci Nutr 2019; 34: 1546669.spa
dcterms.bibliographicCitation24. Toro RM. Propuesta de un marcador anal ıtico como herramienta en la microencapsulaci on de un extracto con actividad antioxidante de c alices de Physalis peruviana. Bogot a, Colombia: Universidad Nacional de Colombia, 2014 (dissertation).spa
dcterms.bibliographicCitation25. Toro RM et al. Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana. Nat Prod Commun 2014; 9: 1573–1575.spa
dcterms.bibliographicCitation26. Cardona MI et al. Influence of extraction process on antioxidant activity and rutin content in Physalis peruviana calyces extract. J Appl Pharm Sci 2017; 7: 164–168.spa
dcterms.bibliographicCitation27. Lorenzi H, Matus FJA. Plantas Medicinais no Brasil: nativas e ex oticas, 2nd edn. Sao Paulo, Brasil: Instituto Plantarum de Estudos da Flora LTDA, 2008.spa
dcterms.bibliographicCitation28. Matallana et al. eds. Biotecnolog ıa aplicada al mejoramiento de los cultivos de frutas tropicales. Bogot a, Colombia: Universidad Nacional de Colombia, 2010.spa
dcterms.bibliographicCitation29. Franco LA et al. Sucrose esters from Physalis peruviana calyces with antiinflammatory activity. Planta Med 2014; 80: 1605–1614.spa
dcterms.bibliographicCitation30. Ramadan MF. Bioactive phytochemicals of cape gooseberry (Physalis peruviana L.). In: Murthy H, Bapat V, eds. Bioactive Compounds in Underutilized Fruits and Nuts, Reference Series in Phytochemistry. Cham: Springer, 2019: 1–16.spa
dcterms.bibliographicCitation31. Echeverry SM et al. Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. J Appl Pharm Sci 2018; 8: 10–18.spa
dcterms.bibliographicCitation32. Topic ICH. Q2 (R1). Validation of Analytical Procedures : Text and Methodology. 2005.Geneva: International Conference on Harmonizationspa
dcterms.bibliographicCitation33. Guidance for Industry. Bioanalytical Method Validation. Silver Spring, MD: CDER/FDA, 2018.spa
dcterms.bibliographicCitation34. Kratz JM et al. An HPLC-UV method for the measurement of permeability of marker drugs in the Caco-2 cell assay. Braz J Med Biol Res 2011; 44: 531–537.spa
dcterms.bibliographicCitation35. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 2006; 1: 1112–1116.spa
dcterms.bibliographicCitation36. Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000; 11(4): 265–283.spa
dcterms.bibliographicCitation37. Hubatsch I et al. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protocol 2007; 2: 2111–2119.spa
dcterms.bibliographicCitation38. Prince PS, Kamalakkannan N. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. J Biochem Mol Toxicol 2006; 20: 96–102.spa
dcterms.bibliographicCitation39. Sun H, Pang KS. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study. Drug MetabDispos 2008; 36: 102–123.spa
dcterms.bibliographicCitation40. Guidance for Industry. Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. Rockeville, MD: CDER/FDA, 2005.spa
dcterms.bibliographicCitation41. Pollard T, Earnshaw W. Cell Biology, 3rd edn. Amsterdam: Elsevier, 2017.spa
dcterms.bibliographicCitation42. Jurasekova Z et al. Effect of pH on the chemical modification of quercetin and structurally related flavonoids characterized by optical (UV-visible and Raman) spectroscopy. Phys Chem Chem Phys 2014; 16: 12802–12811.spa
dcterms.bibliographicCitation43. Wang J, XiH Zhao. Degradation kinetics of fisetin and quercetin in solutions affected by medium pH, temperature and co-existing proteins. J Serb Chem Soc 2016; 81: 243–253.spa
dcterms.bibliographicCitation44. Yang Y et al. Transport of active flavonoids, based on cytotoxicity and lipophilicity: An evaluation using the blood-brain barrier cell and Caco-2 cell models. Toxicol In Vitro 2014; 28: 388–396.spa
dcterms.bibliographicCitation45. Zhang X et al. Absorption and metabolism characteristics of rutin in Caco-2 cells. SciWorld J 2013; 2013: 1–8.spa
dcterms.bibliographicCitation46. Andlauer W et al. Intestinal absorption of rutin in free and conjugated forms. Biochem Pharmacol 2001; 62: 369–374.spa
dcterms.bibliographicCitation47. Meinl W et al. Sulfotransferase forms expressed in human intestinal Caco-2 and TC7 cells at varying stages of differentiation and role in benzo[a]pyrene metabolism. Drug Metab Dispos 2008; 36: 276–283.spa
dcterms.bibliographicCitation48. Ravikumar D et al. Natural flavonoids silymarin and quercetin improve the brain distribution of co-administered P-gp substrate drugs. Springerplus 2016; 5: 1618.spa
dcterms.bibliographicCitation49. Zastre J et al. Lack of P-glycoproteinmediated efflux and the potential involvement of an influx transport process contributing to the intestinal uptake of deltamethrin, cis-permethrin, and trans-permethrin. Toxicol Sci 2013; 136: 284–293.spa
dcterms.bibliographicCitation50. Wang XX et al. Intestinal absorption of triterpenoids and flavonoids from Glycyrrhizae radix et rhizoma in the human Caco-2 monolayer cell model. Molecules 2017; 22: piiE1627.spa
dcterms.bibliographicCitation51. Henriques J et al. Phenolic compounds from Actinidia deliciosa leaves: Caco-2 permeability, enzyme inhibitory activity and cell protein profile studies. J King Saud Univ Sci 2018; 30: 513–518.spa
dcterms.bibliographicCitation52. Verjee S et al. Permeation characteristics of hypericin across Caco-2 monolayers in the presence of single flavonoids, defined flavonoid mixtures or Hypericum extract matrix. J Pharm Pharmacol 2017; 12: 12717.spa
dcterms.bibliographicCitation53. Boyer J et al. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers. J Agric Food Chem 2004; 52: 7172–7179.spa
dcterms.bibliographicCitation54. Ahmad N et al. Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia. Int J Biol Macromol 2016; 91: 640–655.spa
dcterms.bibliographicCitation55. Ahmad N et al. Quantification of rutin in rat’s brain by UHPLC/ESI-QTOF- MS/MS after intranasal administration of rutin loaded chitosan nanoparticles. EXCLI J 2016; 15: 518– 531.spa
dcterms.bibliographicCitation56. Boyle SP et al. Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. Eur J Clin Nutr 2000; 54: 774–782.spa
dcterms.bibliographicCitation57. Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 2009; 16: 97–110.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1111/jphp.13248
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsBiopharmaceutics Classification System; Caco-2 cells; permeability; Physalis peruviana; rutin; solubilityspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineFarmaciaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por