Mostrar el registro sencillo del ítem

dc.contributor.authorAlibaba, Massomeh
dc.contributor.otherPourdarbani, Razieh
dc.contributor.otherKhoshgoftar Manesh, Mohammad Hasan
dc.contributor.otherValencia Ochoa, Guillermo
dc.contributor.otherDuarte Forero, Jorge
dc.date.accessioned2022-11-15T21:19:00Z
dc.date.available2022-11-15T21:19:00Z
dc.date.issued2020-04-06
dc.date.submitted2020-02-04
dc.identifier.urihttps://hdl.handle.net/20.500.12834/973
dc.description.abstractDesign and optimization of the energy system with the efficient method is one the major problem in recent years. The combined emergy-exergy-economic-environmental analysis is one of new methods selected for the optimization of energy systems. At present paper, first, optimal design of thermodynamic, exergo economic and exergo environmental was developed; the geothermal power plant was used as a complement to concentrated solar power (CSP) and then combined emergy-exergy-economic-environmental analysis was conducted. A standalone geothermal cycle (first mode), as well as hybrid Geothermal-Solar cycle (second mode) were investigated to generate the heating/cooling power of the building. The close similarity of the results of the exergy and emergeeconomic analysis was very interesting. For standalone geothermal cycle, both exergo and emerge-economic analysis implied that highest value (6.02E-04 $/s and 3.1915Eþ09 sej/s) was related to turbine due to the heat generated by the impact of the blade, and the lowest value was related to ORC condenser. The exergo and emergo-economic analysis for geothermal-solar hybrid cycle, due to the increase in refrigerant pressure drop inside the coil, the evaporator (4.50E-03 $/s and 4.4699Eþ09 sej/s) and turbine (2.40E-03 $/s and 2.1920Eþ09 sej/s) had the highest amount. Also for standalone cycle, exergo and emergo-environmental implied that ORC turbine had the highest value of 1.26E-06 pts/s and 9.7201Eþ09sej/s. For hybrid geothermal-solar cycle, the evaporator (3.77E-06 pts/s and 6.1814Eþ08sej/s) and turbine (3.27E-06 pts/s and 6.37Eþ08 sej/s) had the highest amount of exergo and emergo-environmental. Solar power plants have only an initial cost and because solar energy is freely available to the system, so its economical exergy degradation is very low and has the lowest environmental exergy degradation. According to the results of the exergo-economic analysis of the hybrid power plant, the highest investment cost is related to solar power plant. It also has the lowest cost of exergy degradation because the environmental impact of fuel flow of solar panel is zero. The highest emerge-environmental rate of 3.3250Eþ09 (sej/s) was belonged to the solar power plant, but its environmental destruction rate was minimal because it does not consume fuel.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceHeliyonspa
dc.titleThermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy conceptspa
dcterms.bibliographicCitationAghbashlo, M., Rosen, M.A., 2018. Consolidating exergoeconomic and exergoenvironmental analyses using the emergy concept for better understanding energy conversion systems. J. Clean. Prod. 172, 696–708.spa
dcterms.bibliographicCitationAyub, M., Mitsos, A., Ghasemi, H., 2015. Thermo-economic analysis of a hybrid solarbinary geothermal power plant. Energy 87, 326–335.spa
dcterms.bibliographicCitationBassetti, M., Consoli, D., Manente, G., Lazzaretto, A., 2018. Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage. Renew. Energy 128, 460–472.spa
dcterms.bibliographicCitationBeier, J., Thiede, S., Herrmann, C., 2017. Energy flexibility of manufacturing systems for variable renewable energy supply integration: real-time control method and simulation. J. Clean. Prod. 141, 648–661.spa
dcterms.bibliographicCitationBicer, Y., Dincer, I., 2017. Development of a new solar and geothermal based combined system. Sol. Energy 127, 269–284.spa
dcterms.bibliographicCitationBonyadi, N., Johnson, E., Baker, D., 2018. Technoeconomic and exergy analysis of a solar geothermal hybrid electric power plant using a novel combined cycle. Energy Convers. Manag. 156, 542–554.spa
dcterms.bibliographicCitationBoyaghchi, F.A., Sabaghian, M., 2016. Multi objective optimisation of a Kalina power cycle integrated with parabolic trough solar collectors based on exergy and exergoeconomic concept. Int. J. Energy Technol. Pol. 12, 154–180.spa
dcterms.bibliographicCitationCardemil, Jose Miguel, Cortes, Felipe, Diaz, Andres, Escobar, Rodrigo, 2016. Thermodynamic evaluation of Geothermal-Solarhybrid power plants in northern Chile. Energy Convers. Manag. 123, 348–361spa
dcterms.bibliographicCitationCarotenuto, A., Figaj, R., Vanoli, L., 2017. A novel Geothermal-Solardistrict heating, cooling and domestic hot water system: dynamic simulation and energy-economic analysis. Energy 141, 2652–2669.spa
dcterms.bibliographicCitationCavalcanti, E.J.C., 2017. Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system. Renew. Sustain. Energy Rev. 67, 507–519.spa
dcterms.bibliographicCitationChen, W., Liu, W., Geng, Y., Brown, M.T., Gao, C., Wu, R., 2017. Recent progress on emergy research: a bibliometric analysis. Renew. Sustain. Energy Rev. 73, 1051–1060.spa
dcterms.bibliographicCitationDincer, I., Rosen, M.A., Ahmadi, P., 2017. Optimization of Energy Systems. Wile.spa
dcterms.bibliographicCitationGonzalez, G.I., Potes, A.P., Junquera, V.R., Lopez, W.A., Pozo, CA Del, 2018. Smart control system to optimize time of use in a solar-assisted air-conditioning by ejector for residential sector. Appl. Sci. 8, 350.spa
dcterms.bibliographicCitationGonzalez-Mejia, A.M., Ma, X.C., 2017. The emergy perspective of sustainable trends in Puerto Rico from 1960 to 2013. Ecol. Econ. 133, 11–22.spa
dcterms.bibliographicCitationGoodarzi, A., 2017. Policy of the Islamic Republic of Iran in optimal utilization of renewable energy sources. J. Strat. Stud. Public Policy 7, 23.spa
dcterms.bibliographicCitationHeberle, F., Hofer, M., 2017. Techno-economic analysis of a solar thermal retrofit for an air-cooled geothermal Organic Rankine Cycle power plant. Renew. Energy 113, 494–502.spa
dcterms.bibliographicCitationIslam, S., Dincer, I., 2017. Development, analysis and performance assessment of a combined solar and geothermal energy-based integrated system for multigeneration. Sol. Energy 147, 328–343.spa
dcterms.bibliographicCitationJavaherdeh, Kourosh, Amin Fard, Mehdi, Zoghi, Mohammad, 2016. Thermo-economic analysis of organic Rankine cycle with cogeneration of heat and power operating with solar and geothermal energy in Ramsar. Modares Mech. Eng. 16 (13), 56–63.spa
dcterms.bibliographicCitationJeong, Y.D., Yu, M.G., Nam, Y., 2017. Feasibility study of a heating, cooling and domestic hot water system combining a photovoltaic-thermal system and a ground source heat pump. Energies 10, 1243.spa
dcterms.bibliographicCitationJiang, P., Zhanga, F., Xu, R., 2016. Thermodynamic analysis of a solar–enhanced geothermal hybrid power plant using CO2 as working fluid. Appl. Therm. Eng. 116, 463–472.spa
dcterms.bibliographicCitationKhalid, F., Dincer, I., Rosen, M., 2017. Techno-economic assessment of a Geothermal- Solarmultigeneration system for buildings. Int. J. Hydrogen Energy 1 (9), 65–72.spa
dcterms.bibliographicCitationLee, K., Kangb, E., Ghorabc, M., Yangc, L., Entchevc, E., Lee, E., 2017. Smart building heating, cooling and power generation with solar geothermal combined heat pump system. In: Paper Presented at the 12th IEA Heat Pump Conference.spa
dcterms.bibliographicCitationMcTigue, Joshua D., Castro, Jose, Mungas, Greg, Kramer, Nick, King, John, Turchi, Craig, Zhu, Guangdong, 2018. Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability. Appl. Energy 228, 1837–1852.spa
dcterms.bibliographicCitationMcTigue, Joshua, Castro, Jose, Mungas, Greg, King, John, Kramer, Nick, Wendt, Daniel, et al., 2019. Techno-economic assessment of geothermal power plants hybridized with solar heat and thermal storage. In: Paper presented at the 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California.spa
dcterms.bibliographicCitationMehrpooya, M., Ghorbani, R., Hosseini, S.S., 2018. Thermodynamic and economic evaluation of a novel concentrated solar power system integrated with absorption refrigeration and desalination cycles. Energy Convers. Manag. 175, 337–356.spa
dcterms.bibliographicCitationMohammadi, A., Ahmadi, M., Bidi, M.H., Ghazvini, M., Ming, T., 2018. Exergy and economic analyses of replacing feedwater heaters in a Rankine cycle with parabolic trough collectors. Energy Rep. 4, 243–251.spa
dcterms.bibliographicCitationOchoa, G., Isaza-Roldan, C., Duarte Forero, J., 2019. A phenomenological base semiphysical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 5 (10), e02700.spa
dcterms.bibliographicCitationOchoa, G., Piero Rojas, J., Duarte Forero, J., 2020. Advance exergo-economic analysis of a waste heat recovery system using ORC for a bottoming natural gas engine. Energies 13 (1), 267.spa
dcterms.bibliographicCitationPan, H., Geng, Y., Jiang, P., Dong, H., Sun, L., Wu, R., 2018. An emergy based sustainability evaluation on a combined landfill and LFG power generation system. Energy 143, 310–322.spa
dcterms.bibliographicCitationRafat, E., Babaelahi, M., Mofidipour, E., 2019. Sustainability analysis of low temperature solar-driven kalina power plant using emergy concept. Int. J. Therm. (IJoT) 22 (3), 118–126.spa
dcterms.bibliographicCitationRamos, A.L., Guarracino, I.L., Mellor, A.L., Alvarez, D.I., Childs, P.E., Daukes, E.K., Markides, C.H., 2017. Solar-Thermal and Hybrid Photovoltaic-Thermal Systems for Renewable Heating. Grantham Institute. Briefng paper, pp. 22–23.spa
dcterms.bibliographicCitationSajid, Z., Khan, F., Zhang, Y., 2016. Process simulation and life cycle analysis of biodiesel production. Renew. Energy 85, 945–952.spa
dcterms.bibliographicCitationValencia Ochoa, G., C ardenas Gutierrez, J., Duarte Forero, J., 2020. Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine. Resources 9 (1), 2.spa
dcterms.bibliographicCitationWang, X., Li, Z., Long, P., Yan, L., Gao, W., Chen, Y., Sui, P., 2017. Sustainability evaluation of recycling in agricultural systems by emergy accounting. Resour. Conserv. Recycl. 117 (B), 114–124.spa
dcterms.bibliographicCitationYan, T., Xu, X., 2018. Utilization of ground heat exchangers: a review. Curr. Sustain. Renew. Energy Rep. 5, 189–198.spa
dcterms.bibliographicCitationZhang, J., Ma, L., 2020. Environmental sustainability assessment of a new sewage treatment plant in China based on infrastructure construction and operation phases emergy analysis. MDPI. Water 12, 484.spa
dcterms.bibliographicCitationZhang, H., Guan, X., Ding, Y., Liu, C., 2018. Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. J. Clean. Prod. 183, 1207–1215.spa
dcterms.bibliographicCitationZhao, H., Zhai, X., Guo, L., Liu, K., Huang, D., Yang, Y., Li, J., Xie, S., Zhang, C., Tang, S., Wang, K., 2019. Assessing the efficiency and sustainability of wheat production systems in different climate zones in China using emergy analysis. J. Clean. Prod.spa
dcterms.bibliographicCitationZyvith, Z.O., Trevena, M.A., Lamantia, R.Y., Sharp, L.A., Yong, A.N., Haghani, S.A., 2018. Geothermal heating/Cooling in massachusetts general hospital. In: Paper Presented at the 2018 ASEE Mid-Atlantic Section Spring Conference. American Society for Engineering Education, Washington, District of Columbia.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.heliyon.2020.e03758
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsEnergy Mechanical engineering Environmental analysis Environmental economics Hybrid solar – geothermal Exergy analysis Exergo-economic Exergo-environmental Emergyspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por