Mostrar el registro sencillo del ítem
Cristalización de vidrios bioactivos del sistema 31SiO2-11P2O5-(58-X) CaO –X MgO: influencia del tratamiento térmico y de la composición química
dc.contributor.author | Monsalve, Mónica | |
dc.contributor.other | López, Esperanza | |
dc.contributor.other | Vargas, Fabio | |
dc.contributor.other | Higuera, Oscar | |
dc.date.accessioned | 2022-11-15T21:18:15Z | |
dc.date.available | 2022-11-15T21:18:15Z | |
dc.date.issued | 2021-08-30 | |
dc.date.submitted | 2021-01-09 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/970 | |
dc.description.abstract | En este trabajo se estudió la influencia de la composición química y del tratamiento térmico en la cristalización de biovidrios del sistema 31SiO2-11P2O5-(58-X) CaO –X MgO (X = 0, 2, 7, 16 y 32). El tratamiento térmico se realizó a 900, 1.000, 1.100 y 1.200 ◦C por un periodo de una hora. Posterior a este proceso las muestras se caracterizaron mediante análisis de difracción de rayos X, espectroscopia infrarroja por transformada de Fourier y análisis térmico diferencial, encontrando que al incrementar el contenido de MgO se inhibe la formación de la fase cristalina hidroxiapatita y se promueve la formación de la fase cristalina whitlockita. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.title | Cristalización de vidrios bioactivos del sistema 31SiO2-11P2O5-(58-X) CaO –X MgO: influencia del tratamiento térmico y de la composición química | spa |
dcterms.bibliographicCitation | [1] W. Cao, L.L. Hench, Bioactive materials, Ceram Int 22 (1996) 493–507, https://doi.org/10.1016/0272-8842(95)00126-3. | spa |
dcterms.bibliographicCitation | [2] A. Zandi Karimi, E. Rezabeigi, R.A.L. Drew, Crystallization behavior of combeite in 45S5 Bioglass® via controlled heat treatment, J Non-Cryst Solids 502 (2018) 176–183, http://dx.doi.org/10.1016/j.jnoncrysol.2018.09.003. | spa |
dcterms.bibliographicCitation | [3] S. Montinaro, M. Luginina, S. Garroni, R. Orrù, F. Delogu, D. Bellucci, et al., Spark plasma sintered CaO-rich bioglass-derived glass-ceramics with different crystallinity ratios: A detailed investigation of their behaviour during biological tests in SBF, J Eur Ceram Soc 39 (2019) 1603–1612, http://dx.doi.org/10.1016/j.jeurceramsoc.2018.12.003 | spa |
dcterms.bibliographicCitation | [4] P. Intawin, S. Panyata, A. Kraipok, T. Tunkasiri, S. Eitssayeam, K. Pengpat, Effects of TiO2 content and thermal parameters on crystallization kinetics and mechanical properties of phosphate based glass system, Thermochim Acta 690 (2020) 178699, http://dx.doi.org/10.1016/j.tca.2020.178699. | spa |
dcterms.bibliographicCitation | [5] A. Saboori, M. Rabiee, F. Moztarzadeh, M. Sheikhi, M. Tahriri, M. Karimi, Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass, Mater Sci Eng 29 (2009) 335–340, http://dx.doi.org/10.1016/j.msec.2008.07.004. | spa |
dcterms.bibliographicCitation | [6] I. Kansal, A. Goel, D.U. Tulyaganov, R.R. Rajagopal, J.M.F. Ferreira, Structural and thermal characterization of CaO–MgO–SiO2-P2O5–CaF2 glasses, J Eur Ceram Soc 32 (2012) 2739–2746, http://dx.doi.org/10.1016/j.jeurceramsoc.2011.10.041 | spa |
dcterms.bibliographicCitation | [7] J. Ma, C.Z. Chen, D.G. Wang, Y. Jiao, J.Z. Shi, Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses, Colloids Surf B 81 (2010) 87–95, http://dx.doi.org/10.1016/j.colsurfb.2010.06.022 | spa |
dcterms.bibliographicCitation | [8] A. Goel, S. Kapoor, R.R. Rajagopal, M.J. Pascual, H.-W. Kim, J.M.F. Ferreira, Alkali-free bioactive glasses for bone tissue engineering: A preliminary investigation, Acta Biomater 8 (2012) 361–372, http://dx.doi.org/10.1016/j.actbio.2011.08.026. | spa |
dcterms.bibliographicCitation | [9] W. Höland, Biocompatible and bioactive glass-ceramics — state of the art and new directions, J Non-Cryst Solids 219 (1997) 192–197, https://doi.org/10.1016/S0022-3093(97)00329-3 | spa |
dcterms.bibliographicCitation | [10] J.M. Oliveira, R.N. Correia, M.H. Fernandes, Effects of Si speciation on the in vitro bioactivity of glasses, Biomater 23 (2002) 371–379, https://doi.org/10.1016/S0142-9612(01)00115-6. | spa |
dcterms.bibliographicCitation | [11] V.K. Marghussian, A. Sheikh-Mehdi Mesgar, Effects of composition on crystallization behaviour and mechanical properties of bioactive glass-ceramics in the MgO–CaO–SiO2-P2O5 system, Ceram Int 26 (2000) 415–420, https://doi.org/10.1016/S0272-8842(99)00072-3 | spa |
dcterms.bibliographicCitation | [12] J. Park, A. Ozturk, Tribological properties of MgO–CaO–SiO2-P2O5–F-based glass-ceramic for dental applications, Mater Lett 61 (2007) 1916–1921, http://dx.doi.org/10.1016/j.matlet.2006.07.155 | spa |
dcterms.bibliographicCitation | [13] M. Navarro Toro, Desarrollo y caracterización de materiales biodegradables para regeneración ósea, Universitat Politècnica de Catalunya, Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, 2005. | spa |
dcterms.bibliographicCitation | [14] A. Al-Noaman, Novel bioactive glass coating for dental implant, Queen Mary University of London, 2012. | spa |
dcterms.bibliographicCitation | [15] I. Wacławska, M. Szumera, Influenceof MgO (CaO) on the structure of silicate-phosphate glasses, J Therm Anal Calorim 84 (2006) 185–190, | spa |
dcterms.bibliographicCitation | [16] H. Arstila, Crystallization characteristics of bioactive glasses, Process Chemistry Centre Laboratory of Inorganic Chemistry, 2008. | spa |
dcterms.bibliographicCitation | [17] A. Arora, Studies on SiO2 -BaO- ZnO- M2O3 -X B2O3 1 X M Al Mn Y La Based Glass Sealants, Thapar Institute of Engineering and Technology, 2009. | spa |
dcterms.bibliographicCitation | [18] K. N‘Dri, J. Sei, D. Houphouet-Boigny, G. Kra, J.C. Jumas, Estimation of glass-forming ability and glass stability of Sb2Se3-As2Se3-Sb2Te3 glasses by using the thermal properties, Chalcogenide Lett 7 (2010) 119–132, http://dx.doi.org/10.3923/jas.2007.3167.3176M. | spa |
dcterms.bibliographicCitation | [19] M.P. Saad, Glass forming ability criterion, Mater Sci Forum 19-20 (1987) 11–18, https://doi.org/10.4028/www.scientific.net/MSF.19-20.11. | spa |
dcterms.bibliographicCitation | [20] A. Saranti, I. Koutselas, M.A. Karakassides, Bioactive glasses in the system CaO–B2O3-P2O5: Preparation, structural study and in vitro evaluation, J Non-Cryst Solids 352 (2006) 390–398, http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.042. | spa |
dcterms.bibliographicCitation | [21] J.M. Oliveira, R.N. Correia, M.H. Fernandes, Effect of SiO2 on amorphous phase separation of CaO–P2O5–SiO2–MgO glasses, J Non-Cryst Solids 273 (2000) 59–63, https://doi.org/10.1016/S0022-3093(00)00144-7 | spa |
dcterms.bibliographicCitation | [22] H. Aguiar, E.L. Solla, J. Serra, P. González, B. León, F. Malz, et al., Raman and NMR study of bioactive Na2O–MgO–CaO–P2O5–SiO2 glasses, J Non-Cryst Solids 354 (2008) 5004–5008, http://dx.doi.org/10.1016/j.jnoncrysol.2008.07.033 | spa |
dcterms.bibliographicCitation | [23] S. Ibrahim, Development and characterisation of calcium phosphate glasses and glass-ceramics containing fluorine and titanium, University of Birmingham, 2010. | spa |
dcterms.bibliographicCitation | [24] J. Massera, L. Hupa, M. Hupa, Influence of the partial substitution of CaO with MgO on the thermal properties and in vitro reactivity of the bioactive glass S53P4, J Non-Cryst Solids 358 (2012) 2701–2707, http://dx.doi.org/10.1016/ j.jnoncrysol.2012.06.032. | spa |
dcterms.bibliographicCitation | [25] E. Zanotto, V. Fokin, Recent studies of internal and surface nucleation in silicate glasses, Proc R Soc Lond, A 361 (2003) 591–612. | spa |
dcterms.bibliographicCitation | [26] S.A.M. Abdel-Hameed, A.A. El-kheshen, Thermal and chemical properties of diopside-wollastonite glass-ceramics in the SiO2–CaO–MgO system from raw materials, Ceram Int 29 (2003) 265–269, https://doi.org/10.1016/S0272-8842(02)00114-1 | spa |
dcterms.bibliographicCitation | [28] J. Park, Biomaterials. An introduction, Plenum Press (1979). | spa |
dcterms.bibliographicCitation | [29] Garcia Ruiz JM, Villacampa del Tiempo AI. Material sólido cerámico de alta biocompatibilidad. 2 161 143, n.d. Disponible en: https://digital.csic.es/handle/10261/6704. | spa |
dcterms.bibliographicCitation | [30] S. Kapoor, A. Goel, M.J. Pascual, J.M.F. Ferreira, Alkali-free bioactive diopside–tricalcium phosphate glass-ceramics for scaffold fabrication: Sintering and crystallization behaviours, J Non-Cryst Solids 432 (2016) 81–89, http://dx.doi.org/10.1016/j.jnoncrysol.2015.05.033 | spa |
dcterms.bibliographicCitation | [31] S. Ben Abdelkader, I. Khattech, C. Rey, M. Jemal, Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées, Thermochim Acta 376 (2001) 25–36, https://doi.org/10.1016/S0040-6031(01)00565-2. | spa |
dcterms.bibliographicCitation | [32] X. Yu, S. Cai, Z. Zhang, X. Guohua, Bioactive pyrophosphate glass/beta-tricalcium phosphate composite with high mechanical properties, Mater Sci Eng C 28 (2008) 1138–1143, http://dx.doi.org/10.1016/j.msec.2007.08.001. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1016/j.bsecv.2021.08.001 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Biovidrio Cristalización de biovidrios Tratamientos térmicos | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |