Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález-Locarno, María
dc.contributor.otherMaza Pautt, Yarley
dc.contributor.otherAlbis, Alberto
dc.contributor.otherFlorez López, Edwin
dc.contributor.otherGrande Tovar, Carlos David
dc.date.accessioned2022-11-15T21:17:20Z
dc.date.available2022-11-15T21:17:20Z
dc.date.issued2020-04-13
dc.date.submitted2020-03-17
dc.identifier.urihttps://hdl.handle.net/20.500.12834/967
dc.description.abstractCape gooseberry (Physalis peruviana L.) is one of the main exotic fruits in demand throughout the world market. However, this fruit has problems with physical and microbial decay causing losses up to thirty percent during post-harvest stage and market storage. As an alternative for conservation, technologies based on edible coatings of biopolymers incorporating essential oils have been developed. In this paper we studied the e ect of edible coatings based on chitosan (CS) and Ruta graveolens L. essential oil (RGEO) at di erent concentrations applied on the surface gooseberries at 18 2 C. The emulsions exhibited a reduction in the viscosity and the particle size with the increasing in the RGEO amount (from 124.7 cP to 26.0 cP for CS + RGEO 0.5% and CS + RGEO 1.5%, respectively). A lower weight loss was obtained for fruits coated with CS + RGEO 0.5% (12.7%) as compared to the uncoated (15%), while the maturity index increased in a lower amount for CS + RGEO coated than the uncoated fruits. The mesophyll growth was delayed three days after the coating applications for CS + RGEO 1.0% and 1.5%. At day twelve of the coating process, fruits with CS + RGEO 1.5% presented only 3.1 Log UFC/g of aerobic mesophylls and 2.9 Log UFC/g of molds and yeasts, while the uncoated fruits presented 4.2 Log UFC/g of aerobic mesophylls and 4.0 Log UFC/g of molds and yeasts, demonstrating a microbial barrier of the coatings incorporating RGEO in a concentration dependent manner. The CS + RGEO coating also preserve the antioxidant property of case gooseberries after twelve days of treatment under storage according to the 2,20-Diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid) (ABTS) results. It was demonstrated by the ABTS method that T5 antioxidant capacity from day one to day twelve only decreases from 55% to 44%, while in the uncoated fruits (T1) the antioxidant capacity decreased from 65% to 18%. On the other hand, using the DPPH method the reduction was from 73% to 24% for the uncoated samples and 55% to 43% for T5. From the sensorial analysis, we recommend the use of CS + RGEO 0.5% that was still accepted by the panelists after the sixth day of application. These results show the potential application of these coatings as postharvest treatment under storage and low temperature conditions during twelve days of treatment for cape gooseberry fruits.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMDPI AGspa
dc.titleAssessment of Chitosan-Rue (Ruta graveolens L.) Essential Oil-Based Coatings on Refrigerated Cape Gooseberry (Physalis peruviana L.) Qualityspa
dcterms.bibliographicCitation1. Strik, B.C. Berry Crops: Worldwide Area and Production Systems. In Berry Fruit Value Added Products for Health Promotion, 1st ed.; Zhao, Y., Ed.; CRC: Boca Raton, FL, USA, 2007; Volume 1, pp. 3–49.spa
dcterms.bibliographicCitation2. Fischer, G.; Herrera, A.; Almanza, P.J. Cape gooseberry (Physalis peruviana L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Elsevier: Amsterdam, The Netherlands, 2011; pp. 374–397.spa
dcterms.bibliographicCitation3. Ramadan, M.F. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Res. Int. 2011, 44, 1830–1836.spa
dcterms.bibliographicCitation4. Mayorga, H.; Knapp, H.; Winterhalter, P.; Duque, C. Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.). J. Agric. Food Chem. 2001, 49, 1904–1908.spa
dcterms.bibliographicCitation5. McCain, R. Goldenberry, passionfruit and white sapote: Potential fruits for cool subtropical areas. New Crop. 1993, 479–486.spa
dcterms.bibliographicCitation6. Carvalho, C.P.; Villaño, D.; Moreno, D.A.; Serrano, M.; Valero, D. Alginate Edible Coating And Cold Storage For Improving The Physicochemical Quality Of Cape Gooseberry (Physalis Peruviana L.). HSOA J. Food Sci. Nutr. 2015, 1, 1–7.spa
dcterms.bibliographicCitation7. Flóres, R.; Víctor, J.; Fischer, G.; Sora, R.; Ángel, D. Producción, Poscosecha y Exportación de la Uchuva (Physalis peruviana L.); Universidad Nacional de Colombia: Bogotá, Colombia, 2000; pp. 9–22.spa
dcterms.bibliographicCitation8. Villamizar, F.; Ramírez, A.; Meneses, M. Estudio de la caracterización física, morfológica y fisiológica poscosecha de la uchuva (Physalis peruviana L.). Agro Desarro. 1993, 4, 305–320.spa
dcterms.bibliographicCitation9. Trinchero, G.D.; Sozzi, G.O.; Cerri, A.M.; Vilella, F.; Fraschina, A.A. Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biol. Technol. 1999, 16, 139–145.spa
dcterms.bibliographicCitation10. Rao, V.G. A new post-harvest disease of cape-gooseberry. J. Univ. Bombay 1976, 45, 58–61.spa
dcterms.bibliographicCitation11. Sharma, N.; Khan, A.M. Fruit rots of cape gooseberry. Indian Phytopathol. 1978, 31, 513–514.spa
dcterms.bibliographicCitation12. Ahmad, M.S.; Siddiqui, M.W. Commercial Quality of Fruits: Part I. In Postharvest Quality Assurance of Fruits; Springer: Berlin, Germany, 2015; pp. 61–89.spa
dcterms.bibliographicCitation13. Palou, L.; Smilanick, J.L.; Crisosto, C.H. Evaluation of food additives as alternative or complementary chemicals To conventional fungicides for the control of major postharvest diseases of stone fruit. J. Food Prot. 2009, 72, 1037–1046.spa
dcterms.bibliographicCitation14. Grande-Tovar, C.D.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan coatings enriched with essential oils: E ects on fungi involved in fruit decay and mechanisms of action. Trends Food Sci. Technol. 2018, 78, 61–71.spa
dcterms.bibliographicCitation15. Guilbert, S.; Gontard, N.; Gorris, L.G.M. Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT Food Sci. Technol. 1996, 29, 10–17spa
dcterms.bibliographicCitation16. Yousuf, B.; Qadri, O.S.; Srivastava, A.K. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of di erent edible coatings: A review. LWT 2018, 89, 198–209.spa
dcterms.bibliographicCitation17. Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166.spa
dcterms.bibliographicCitation18. Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841.spa
dcterms.bibliographicCitation19. Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Edible coatings to incorporate active ingredients to fresh-cut fruits: A review. Trends Food Sci. Technol. 2009, 20, 438–447.spa
dcterms.bibliographicCitation20. Licodiedo , S.; Koslowski, L.A.D.; Scartazzini, L.; Monteiro, A.R.; Ninow, J.L.; Borges, C.D. Conservation of physalis by edible coating of gelatin and calcium chloride. Int. Food Res. J. 2016, 23.spa
dcterms.bibliographicCitation21. Reddy, D.N.; Al-Rajab, A.J. Chemical composition, antibacterial and antifungal activities of Ruta graveolens L. volatile oils. Cogent Chem. 2016, 2, 1220055.spa
dcterms.bibliographicCitation22. Kunicka-Styczy ´ nska, A.; Gibka, J. Antimicrobial Activity of Undecan-x-ones (x = 2–4). Pol. Tow. Mikrobiol. POLISH Soc. Microbiol. 2010, 59, 301–306.spa
dcterms.bibliographicCitation23. Grande Tovar,C.D.;Delgado-Ospina, J.;Navia Porras,D.P.; Peralta-Ruiz,Y.; Cordero,A.P.; Castro, J.I.; Valencia,C.; Noé, M.; Mina, J.H.; Chaves López, C. Colletotrichum Gloesporioides Inhibition In Situ by Chitosan-Ruta graveolens Essential Oil Coatings: Effect onMicrobiological, Physicochemical, and Organoleptic Properties of Guava (Psidium guajava L.) during Room Temperature Storage. Biomolecules 2019, 9, 399.spa
dcterms.bibliographicCitation24. Instituto Colombiano de Normas Técnicas y Certificación. Frutas Frescas. Uchuva. Especificaciones; NTC 4580; ICONTEC: Bogotá, Colombia, 1999; Volume 14.spa
dcterms.bibliographicCitation25. Martínez, K.; Ortiz, M.; Albis, A.; Gilma Gutiérrez Castañeda, C.; Valencia, E.M.; Grande Tovar, D.C. The E ect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules 2018, 8, 155.spa
dcterms.bibliographicCitation26. International Standards Organization. Piston-Operated Volumetric Apparatus—Part-2: Piston Pipettes; ISO: Geneva, Switzerland, 2002; Volume 11.spa
dcterms.bibliographicCitation27. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological e ects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475.spa
dcterms.bibliographicCitation28. Lanchero, O.; Velandia, G.; Fischer, G.; Varela, N.C.; García, H. Comportamiento de la uchuva (Physalis peruviana L.) en poscosecha bajo condiciones de atmósfera modificada activa. Rev. Corpoica-Ciencia y Tecnol. Agropecu. 2007, 8, 61–68.spa
dcterms.bibliographicCitation29. Ávila, J.A.; Moreno, P.; Fischer, G.; Miranda, D. Influencia de la madurez del fruto y del secado del cáliz en uchuva (Physalis peruviana L.), almacenada a 18 C. Acta Agronómica 2006, 55, 29–38.spa
dcterms.bibliographicCitation30. Velez, C.; Alicia, B. Efecto de la radiación UV-C Sobre el Desarrollo de Rhizopus spp. y Phytophthora spp. en la Naranjilla (Solanum quitoense). Bachelor’s Thesis, Universidad Tecnológica Equinoccial, Quito, Ecuador, 2012.spa
dcterms.bibliographicCitation31. Balaguera-López, H.E.; Martínez, C.A.; Herrera-Arévalo, A. Papel del cáliz en el comportamiento poscosecha de frutos de uchuva (Physalis peruviana L.) ecotipo Colombia. Rev. Colomb. Ciencias Hortícolas 2014, 8, 181–191.spa
dcterms.bibliographicCitation32. Instituto Colombiano de Normas Técnicas y Certificación. Microbiología. Guía General para el Recuento de Mohos y Levaduras. In Técnica de Recuento de Colonias a 25 C; NTC 4132; ICONTEC: Bogotá, Colombia, 1997; Volume 7.spa
dcterms.bibliographicCitation33. Instituto Colombiano de Normas Técnicas y Certificación. Microbiología de Alimentos y Productos para Alimentación Animal. In Requisitos Generales y Directrices para Análisis Microbiológicos; NTC 4092; ICONTEC: Bogotá, Colombia, 2016; Volume 95.spa
dcterms.bibliographicCitation34. International Standard Organization. Microbiology of the Food Chain-Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.-Part 2: Enumeration; ISO: Geneva, Switzerland, 2013; Volume 12.spa
dcterms.bibliographicCitation35. Instituto Colombiano de Normas Técnicas y Certificación. Análisis Sensorial. In Identificación y Selección de Descriptores para Establecer un Perfil Sensorial por una Aproximación Multidimensional; NTC 3932; ICONTEC: Bogotá, Colombia, 1996; Volume 31.spa
dcterms.bibliographicCitation36. Azeredo, H.; de Britto, D.; Assis, O. Chitosan Edible Films and Coatings: A review. In Chitosan: Manufacture, Properties, and Usage; Davis, S.P., Ed.; Nova Science Publishers: Hauppage. NY, USA, 2010; pp. 179–194.spa
dcterms.bibliographicCitation37. Sánchez-González, L.; Pastor, C.; Vargas, M.; Chiralt, A.; González-Martínez, C.; Cháfer, M. E ect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol. Technol. 2011, 60, 57–63spa
dcterms.bibliographicCitation38. Liu, N.; Chen, X.-G.; Park, H.-J.; Liu, C.-G.; Liu, C.-S.; Meng, X.-H.; Yu, L.-J. E ect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym. 2006, 64, 60–65.spa
dcterms.bibliographicCitation39. Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009, 114, 1173–1182.spa
dcterms.bibliographicCitation40. Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT Food Sci. Technol. 2010, 43, 837–842.spa
dcterms.bibliographicCitation41. Kim, K.W.; Thomas, R.L.; Lee, C.; Park, H.J. Antimicrobial activity of native chitosan, degraded chitosan, and O-carboxymethylated chitosan. J. Food Prot. 2003, 66, 1495–1498.spa
dcterms.bibliographicCitation42. Tsai, G.; Su, W.; Chen, H.; Pan, C. Antimicrobial activity of shrimp chitin and chitosan from di erent treatments and applications of fish preservation. Fish. Sci. 2002, 68, 170–177.spa
dcterms.bibliographicCitation43. Liu, H.; Du, Y.;Wang, X.; Sun, L. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 2004, 95, 147–155.spa
dcterms.bibliographicCitation44. Je, J.-Y.; Kim, S.-K.; Byun, H.-G.; Moon, S.-H. Antimicrobial Activity of Hetero-Chitosans and Their Oligosaccharides withDi erent Molecular Weights. J. Microbiol. Biotechnol. 2004, 14, 317–323.spa
dcterms.bibliographicCitation45. Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 2006, 63, 367–374.spa
dcterms.bibliographicCitation46. Navarro-Tarazaga, M.L. Efecto de la Composición de Recubrimientos Comestibles a Base de Hidroxipropilmetilcelulosa y Cera de Abeja en la Calidad de Ciruelas, Naranjas y Mandarinas. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2008.spa
dcterms.bibliographicCitation47. Hernandez, E. Edible coating from lipids and resins. In Edible Coatings and Films to Improve Food Quality; Technomic Publishing: Lancaster, PA, USA; Basel, Switzerland, 1994; pp. 279–303.spa
dcterms.bibliographicCitation48. Bonilla Lagos, M.J.; Atarés Huerta, L.M.; Vargas, M.; Chiralt, A. Physicochemical properties of chitosan-essential oils film-forming dispersions. E ect of homogenization treatments. Procedia Food Sci. 2011, 1, 44–49.spa
dcterms.bibliographicCitation49. Vargas, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Characterization of chitosan–oleic acid composite films. Food Hydrocoll. 2009, 23, 536–547.spa
dcterms.bibliographicCitation50. Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. E ect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocoll. 2012, 26, 9–16.spa
dcterms.bibliographicCitation51. Dhall, R.K. Advances in edible coatings for fresh fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450.spa
dcterms.bibliographicCitation52. Álvarez-Herrera, J.G.; Galvis, J.A.; Balaguera-López, H.E. Determinación de cambios físicos y químicos durante la maduración de frutos de champa (Campomanesia lineatifolia R. & P.). Agron. Colomb. 2009, 27, 253–259.spa
dcterms.bibliographicCitation53. Mahfoudhi, N.; Hamdi, S. Use of AlmondGumandGumArabic as Novel Edible Coating to Delay Postharvest Ripening and to Maintain Sweet Cherry (P runus avium) Quality during Storage. J. Food Process. Preserv. 2015, 39, 1499–1508.spa
dcterms.bibliographicCitation54. Galvis, J.A.; Fischer, G.; Gordillo, O.P. Cosecha y poscosecha de la uchuva. In Avances en Cultivo, Poscosecha y Exportación de la Uchuva; Universidad Nacional de Colombia: Bogotá, Colombia, 2005; pp. 165–190.spa
dcterms.bibliographicCitation55. Hazrati, S.; Kashkooli, A.B.; Habibzadeh, F.; Tahmasebi-Sarvestani, Z.; Sadeghi, A.R. Evaluation of Aloe vera gel as an alternative edible coating for peach fruits during cold storage period. Gesunde Pflanz. 2017, 69, 131–137.spa
dcterms.bibliographicCitation56. Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. E ect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41.spa
dcterms.bibliographicCitation57. Sinning, A.; Bermont, D. Efecto de Recubrimientos Basados en Quitosano y Aceite Esencial de Ruda (Ruta graveolens L.) en el Control de Antracnosis Causada por Colletotrichum Gloeosporioides en Papaya maradol (Carica papaya L.). Bachelor’s Thesis, Universidad del Atlántico, Puerto Colombia, Colombia, 2019.spa
dcterms.bibliographicCitation58. Olivas, G.I.; Barbosa-Cánovas, G.V. Edible coatings for fresh-cut fruits. Crit. Rev. Food Sci. Nutr. 2005, 45, 657–670.spa
dcterms.bibliographicCitation59. Álvarez Quintero, R.M. Formulación de un Recubrimiento Comestible para Frutas Cítricas, Estudio de su Impacto Mediante Aproximación Metabolómica y Evaluación de la Calidad Poscosecha. Ph.D. Thesis, Universidad de Antioquia, Medellin, Colombia, 2012.spa
dcterms.bibliographicCitation60. Kariola, T.; Brader, G.; Li, J.; Palva, E.T. Chlorophyllase 1, a Damage Control Enzyme, A ects the Balance between Defense Pathways in Plants. Plant Cell 2005, 17, 282–294spa
dcterms.bibliographicCitation61. Andrade, S.C.A.; Baretto, T.A.; Arcanjo, N.M.O.; Madruga, M.S.; Meireles, B.; Cordeiro, Â.M.T.; Barbosa de Lima, M.A.; de Souza, E.L.; Magnani, M. Control of Rhizopus soft rot and quality responses in plums (Prunus domestica L.) coated with gum arabic, oregano and rosemary essential oils. J. Food Process. Preserv. 2017, 41, e13251.spa
dcterms.bibliographicCitation62. Riva, S.C.; Opara, U.O.; Fawole, O.A. Recent developments on postharvest application of edible coatings on stone fruit: A review. Sci. Hortic. (Amst.) 2020, 262, 109074.spa
dcterms.bibliographicCitation63. Ncama, K.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food Packag. Shelf Life 2018, 16, 157–167.spa
dcterms.bibliographicCitation64. Allen, M.J.; Edberg, S.C.; Reasoner, D.J. Heterotrophic plate count bacteria—What is their significance in drinking water? Int. J. Food Microbiol. 2004, 92, 265–274.spa
dcterms.bibliographicCitation65. de La-Rotta, M.F. Enfermedades de la uchuva (Physalis peruviana L.); Centro de Edafología y Biología Aplicada del Segura: Murcia, España, 2014; p. 49.spa
dcterms.bibliographicCitation66. Kim, I.; Lee, H.; Kim, J.E.; Song, K.B.; Lee, Y.S.; Chung, D.S.; Min, S.C. Plum coatings of lemongrass oil-incorporating carnauba wax-based nanoemulsion. J. Food Sci. 2013, 78, E1551–E1559.spa
dcterms.bibliographicCitation67. Dawidowicz, A.L.; Wianowska, D.; Olszowy, M. On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). Food Chem. 2012, 131, 1037–1043.spa
dcterms.bibliographicCitation68. Moharram, H.A.; Youssef, M.M. Methods for determining the antioxidant activity: A review. Alex. J. Fd. Sci. Technol. 2014, 11, 31–42.spa
dcterms.bibliographicCitation69. Ruiz Andrade, E.D. Comparación deMétodos de Análisis para la Determinación de Capacidad Antioxidante en Uvilla (Physalis peruviana). Bachelor’s Thesis, Universidad Tecnológica Equinoccial, Quito, Ecuador, 2018.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/app10082684
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsantioxidant; antibacterial; chitosan edible coatings; Physalis peruviana; Ruta graveolens essential oilspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por