Mostrar el registro sencillo del ítem
Kineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactor
dc.contributor.author | Saldarriaga, Luis Fernando | |
dc.contributor.other | Almenglo, Fernando | |
dc.contributor.other | Ramírez, Martín | |
dc.contributor.other | Cantero, Domingo | |
dc.date.accessioned | 2022-11-15T21:17:08Z | |
dc.date.available | 2022-11-15T21:17:08Z | |
dc.date.issued | 2020-01-28 | |
dc.date.submitted | 2019-09-16 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/966 | |
dc.description.abstract | Background: Thedeterminationofkineticparametersandthedevelopmentofmathematicalmodelsareofgreat interesttopredictthegrowthofmicroalgae,theconsumptionofsubstrateandthedesignofphotobioreactors focusedonCO2 capture.However,mostofthemodelsintheliteraturehavebeendevelopedforCO2 concentrationsbelow10%. Results: A nonaxenicmicroalgalconsortiumwasisolatedfromlandfill leachateinordertostudyitskinetic behaviorusingadynamicmodel.ThemodelconsideredtheCO2 masstransferfromthegasphasetotheliquid phaseandtheeffectoflightintensity,assimilatednitrogenconcentration,ammoniumconcentrationand nitrateconcentration.Theproposedmathematicalmodelwasadjustedwith13kineticparametersand validatedwithagood fit obtainedbetweenexperimentalandsimulateddata. Conclusions: Goodresultswereobtained,demonstratingtherobustnessoftheproposedmodel.Theassumption inthemodelofDICinhibitionintheammoniumandnitrateuptakeswascorrect,sothisaspectshouldbe consideredwhenevaluatingthekineticswithmicroalgaewithhighinletCO2 concentrations. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Pontificia Universidad Catolica de Valparaiso | spa |
dc.title | Kineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactor | spa |
dcterms.bibliographicCitation | [1]FarrellyDJ,EverardCD,FaganCC,etal.Carbonsequestrationandtheroleofbiolog- icalcarbonmitigation:Areview.RenewSustainEnergyRev2013;21:712–27. https://doi.org/10.1016/j.rser.2012.12.038. | spa |
dcterms.bibliographicCitation | [2] RamírezM,GómezJ,CanteroD.Biogas:Sources,purificationanduses.Biogas.In: SivakumarS,SharmaUC,PrasadR,editors.Energyscienceandtechnology.Hydro- genandothertechnologiessources,purificationandusesUSA:StudiumPressLLC; 2015.p.296–323. | spa |
dcterms.bibliographicCitation | [3]HsuehHT,LiWJ,ChenHH,etal.Carbonbio-fixationbyphotosynthesisof Thermosynechococcus sp.CL-1 and Nannochloropsisoculta. JPhotochem PhotobiolB2009;95(1):33–9. https://doi.org/10.1016/j.jphotobiol.2008.11. 010. PMid:19167907. | spa |
dcterms.bibliographicCitation | [4]SheneC,ChistiY,BustamanteM,etal.EffectofCO2 in theaerationgasoncultivation of themicroalga Nannochloropsisoculata: Experimentalstudyandmathematical modelingofCO2 assimilation.AlgalRes2016;13:16–29. https://doi.org/10.1016/j. algal.2015.11.005. | spa |
dcterms.bibliographicCitation | [5]PegallapatiA,NirmalakhandanN.Modelingalgalgrowthinbubblecolumnsunder spargingwithCO2-enrichedair.BioresourTechnol2012;124:137–45. https://doi. org/10.1016/j.biortech.2012.08.026. PMid:22989642. | spa |
dcterms.bibliographicCitation | [6]MuharamY,Dianursanti,PramadanaAB,etal.Modellingandsimulationofabubble column photobioreactorforthecultivationofmicroalgae Nannochloropsissalina. ChemEngTrans2017;56:1555–60. https://doi.org/10.3303/CET1756260. | spa |
dcterms.bibliographicCitation | [7]PfaffingerC,SchöneD,TrunzS,etal.Model-basedoptimizationofmicroalgaeareal productivityin flat-plategas-liftphotobioreactors.AlgalRes2016;20:153–63. https://doi.org/10.1016/j.algal.2016.10.002 | spa |
dcterms.bibliographicCitation | [8]KasiriS,UlrichA,PrasadV.Kineticmodelingandoptimizationofcarbondioxide fixationusingmicroalgaecultivatedinoil-sandsprocesswater.ChemEngSci2015; 137:697–711. https://doi.org/10.1016/j.ces.2015.07.004. | spa |
dcterms.bibliographicCitation | [9]LeeE,ZhangQ.Integratedco-limitationkineticmodelformicroalgaegrowthinan- aerobicallydigestedmunicipalsludgecentrate.AlgalRes2016;18:15–24. https:// doi.org/10.1016/j.algal.2016.05.019. | spa |
dcterms.bibliographicCitation | [10]KilhamSS,KreegerD,LynnSG,etal.COMBO:Adefinedfreshwatercultureme- diumforalgaeandzooplankton.Hydrobiologia1998;377:147–59. https://doi. org/10.1023/A:1003231628456. | spa |
dcterms.bibliographicCitation | [11]AndersenRA,KawachiM.Traditional microalgaeisolationtechniques.In: AndersenRA,editor.Algalculturingtechniques.Oxford:ElsevierAcademic Press;2005.p.83–100. https://doi.org/10.1016/B978-012088426-1/50007-X. PMid:15743338. | spa |
dcterms.bibliographicCitation | [12]ThawechaiT,CheirsilpB,LouhasakulY,etal.Mitigationofcarbondioxidebyoleag- inousmicroalgaeforlipidsandpigmentsproduction:Effectoflightilluminationand carbondioxidefeedingstrategies.BioresourTechnol2016;219:139–49. https://doi. org/10.1016/j.biortech.2016.07.109. PMid:27484670. | spa |
dcterms.bibliographicCitation | [13]ZhaoB,SuY.Processeffectofmicroalgal-carbondioxide fixationandbiomasspro- duction:Areview.RenewSustainEnergyRev2014;31:121–32. https://doi.org/10. 1016/j.rser.2013.11.054. | spa |
dcterms.bibliographicCitation | [14]Safi C, UrsuA,LarocheC,etal.Aqueousextractionofproteinsfrommicroalgae:Ef- fectofdifferentcelldisruptionmethods.AlgalRes2014;3:61–5. https://doi.org/10. 1016/j.algal.2013.12.004. | spa |
dcterms.bibliographicCitation | [15]ClesceriLS,GreenbergA,EatonA.Standardmethodsfortheexaminationofwater and wastewater..20thedWashington,DC:AmericanPublicHealthAssociation, American WaterWorksAssociation,WaterEnvironmentFederation;1999;1120 ISBN:0875532357. | spa |
dcterms.bibliographicCitation | [16]McClureDD,AboudhaN,KavanaghJM,etal.Mixinginbubblecolumnreactors:Ex- perimental studyandCFDmodeling.ChemEngJ2015;264:291–301. https://doi. org/10.1016/j.cej.2014.11.090. | spa |
dcterms.bibliographicCitation | [17] FlynnKJ,FashamMJ,HipkinCR.Modellingtheinteractionsbetweenammonium andnitrateuptakeinmarinephytoplankton.PhilosTransRSocLondonSerB 1997;352(1361):1625–45. https://doi.org/10.1098/rstb.1997.0145. PMC: 169207829. | spa |
dcterms.bibliographicCitation | [18]Sanz-LuqueE,Chamizo-AmpudiaA,LlamasA,etal.Understandingnitrateassimila- tionanditsregulationinmicroalgae.FrontPlantSci2015;6(899). https://doi.org/10. 3389/fpls.2015.00899. PMid:26579149. | spa |
dcterms.bibliographicCitation | [19]Franco-MorgadoM,AlcántaraC,NoyolaA,etal.Astudyofphotosyntheticbiogas upgradingbasedonahighratealgalpondunderalkalineconditions:Influenceof theilluminationregime.SciTotalEnviron2017;592:419–25. https://doi.org/10. 1016/j.scitotenv.2017.03.077. PMid:28340452 | spa |
dcterms.bibliographicCitation | [20]MontgomeryDC.Designandanalysisofexperiments..5thedNewYork:JohnWiley & Sons,Inc.;1997;684ISBN:0471316490. | spa |
dcterms.bibliographicCitation | [21]ArbibZ,RuizJ,Alvarez-DiazP,etal.Photobiotreatment:influenceofnitrogenand phosphorusratioinwastewaterongrowthkineticsof Scenedesmusobliquus. IntJ Phytoremediation2013;15(8):774–88. https://doi.org/10.1080/15226514.2012. 735291. PMid:23819274. | spa |
dcterms.bibliographicCitation | [22]BarbosaMJ,ZijffersJ,NisworoA,etal.Optimizationofbiomass,vitamins,andcarot- enoidyieldonlightenergyina flat-panelreactorusingtheA-stattechnique. BiotechnolBioeng2004;89(2):233–42. https://doi.org/10.1002/bit.20346. PMid: 15593095 | spa |
dcterms.bibliographicCitation | [23]BabcockR,MaldaJ,RadwayJ.Hydrodynamicsandmasstransferinatubularairlift photobioreactor.JApplPhycol2002;14:169–84. https://doi.org/10.1023/A: 1019924226457. | spa |
dcterms.bibliographicCitation | [24]SanderR.CompilationofHenry’s lawconstants(version4.0)forwaterassolvent. AtmosChemPhys2015;15:4399–981. https://doi.org/10.5194/acp-15-4399-2015. | spa |
dcterms.bibliographicCitation | [25]Callejo-LópezJ,RamírezM,BolívarJ,etal.Mainvariablesaffectingachemical-enzy- maticmethodtoobtainproteinandaminoacidsfromresistantmicroalgae.JChemN Y 2019;2019:1390463. https://doi.org/10.1155/2019/1390463. | spa |
dcterms.bibliographicCitation | [26]AndersenRA,BrettRW,PotterD,etal.PhylogenyoftheEustigmatophyceaebased upon18SrDNA,withemphasison Nannochloropsis. Protist1998;149(1):61–74. https://doi.org/10.1016/S1434-4610(98)70010-0. | spa |
dcterms.bibliographicCitation | [27]BaroniÉ,YapK,WebleyPA,etal.Theeffectofnitrogendepletiononthecellsize, shape,densityandgravitationalsettlingof Nannochloropsissalina, Chlorella sp.(ma- rine) and Haematococcuspluvialis. AlgalRes2019;39:101454. https://doi.org/10. 1016/j.algal.2019.101454 | spa |
dcterms.bibliographicCitation | [28]KandilianR,LeeE,PilonL.Radiationandopticalpropertiesof Nannochloropsis oculata grownunderdifferentirradiancesandspectra.BioresourTechnol2013; 137:63–73. https://doi.org/10.1016/j.biortech.2013.03.058. PMid:23587810. | spa |
dcterms.bibliographicCitation | [29]MaY,WangZ,YuC,etal.Evaluationofthepotentialof9 Nannochloropsis strainsfor biodieselproduction.BioresourTechnol2014;167:503–9. https://doi.org/10.1016/j. biortech.2014.06.047. PMid:25013933. | spa |
dcterms.bibliographicCitation | [30]LizzulA,Lekuona-AmundarainA,PurtonS,etal.Characterizationof Chlorella sorokiniana, UTEX1230.Biology2018;7(2):25. https://doi.org/10.3390/biol- ogy7020025. PMid:29652809. | spa |
dcterms.bibliographicCitation | [31]XiaJ,GongS,JinX,etal.Effectsofsimulated flue gasesongrowthandlipidproduc- tionof Chlorellasorokiniana CS-01.JCentSouthUniv2013;20(3):730–6. https://doi. org/10.1007/s11771-013-1541-8. | spa |
dcterms.bibliographicCitation | [32]KumarK,BanerjeeD,DasD.Carbondioxidesequestrationfromindustrial flue gasby Chlorellasorokiniana. BioresourTechnol2014;152:225–33. https://doi.org/10.1016/j. biortech.2013.10.098. PMid:24292202. | spa |
dcterms.bibliographicCitation | [33]RazzakSA,IlyasM,AliSM,etal.EffectsofCO2 concentrationandpHonmixotrophic growthof Nannochloropsisoculata. ApplBiochemBiotechnol2015;176(5): 1290–302. https://doi.org/10.1007/s12010-015-1646-7. PMid:25926014. | spa |
dcterms.bibliographicCitation | [34]ChiuS-Y,KaoC-Y,TsaiM-T,etal.LipidaccumulationandCO2 utilizationof Nannochloropsisoculata in responsetoCO2 aeration.BioresourTechnol2009;100 (2):833–8. https://doi.org/10.1016/j.biortech.2008.06.061. PMid:18722767. | spa |
dcterms.bibliographicCitation | [35]ScherholzML,CurtisWR.AchievingpHcontrolinmicroalgalculturesthroughfed- batchadditionofstoichiometrically-balancedgrowthmedia.BMCBiotechnol 2013;13:39. https://doi.org/10.1186/1472-6750-13-39. PMid:23651806. | spa |
dcterms.bibliographicCitation | [36]MennaaF,ArbibZ,PeralesJ.Urbanwastewatertreatmentbysevenspeciesof microalgaeandanalgalbloom:Biomassproduction,NandPremovalkineticsand harvestability.WaterRes2015;83:42–51. https://doi.org/10.1016/j.watres.2015.06. 007. PMid:26117372 | spa |
dcterms.bibliographicCitation | [37]FréN,dasChagasA,RechR,etal.Kineticmodelingof Dunaliellatertiolecta growth underdifferentnitrogenconcentrations.ChemEngTechnol2016;39(9):1716–22. https://doi.org/10.1002/ceat.201500585. | spa |
dcterms.bibliographicCitation | [38]YangA.ModelingandevaluationofCO2 supply andutilizationinalgalponds. Ind EngChemRes2011;50(19):11181–92. https://doi.org/10.1021/ ie200723w | spa |
dcterms.bibliographicCitation | [39] DecostereB,CraeneJ,HoeyS,etal.Validationofamicroalgalgrowthmodelac- countingwithinorganiccarbonandnutrientkineticsforwastewatertreatment. ChemEngJ2016;285:189–97. https://doi.org/10.1016/j.cej.2015.09.111. | spa |
dcterms.bibliographicCitation | [40]SurendhiranD,VijayM,SivaprakashB,etal.Kineticmodelingofmicroalgalgrowth and lipidsynthesisforbiodieselproduction.3Biotech2015;5:663–9. https://doi. org/10.1007/s13205-014-0264-3. PMid:28324516. | spa |
dcterms.bibliographicCitation | [41]BernardO,RémondB.Validationofasimplemodelaccountingforlightandtemper- atureeffectonmicroalgalgrowth.BioresourTechnol2012;123:520–7. https://doi. org/10.1016/j.biortech.2012.07.022. PMid:22940363. | spa |
dcterms.bibliographicCitation | [42] KetheesanB,NirmalakhandanN.Modelingmicroalgalgrowthinanairlift-driven racewayreactor.BioresourTechnol2013;136:689–96. https://doi.org/10.1016/j. biortech.2013.02.028. PMid:23603218. | spa |
dcterms.bibliographicCitation | [43]PackerA,LiY,AndersenT,etal.Growthandneutrallipidsynthesisingreen microalgae:Amathematicalmodel.BioresourTechnol2011;102(1):111–7. https://doi.org/10.1016/j.biortech.2010.06.029. PMid:20619638. | spa |
dcterms.bibliographicCitation | [44]KimJ,LiuZ,LeeJ-Y,etal.Removalofnitrogenandphosphorusfrommunicipal wastewatereffluentusing Chlorellavulgaris anditsgrowthkinetics.DesalinWater Treat2013;51(40–42):7800–6. https://doi.org/10.1080/19443994.2013.779938. | spa |
dcterms.bibliographicCitation | [45]BanerjeeS,RamaswamyS.Dynamicprocessmodelandeconomicanalysisof microalgaecultivationinopenracewayponds.AlgalRes2017;26:330–40. https:// doi.org/10.1016/j.algal.2017.08.011. | spa |
dcterms.bibliographicCitation | [46]Figueroa-TorresGM,PittmanJK,TheodoropoulosC.Kineticmodellingofstarchand lipidformationduringmixotrophic,nutrient-limitedmicroalgalgrowth.Bioresour Technol 2017;241:868–78. https://doi.org/10.1016/j.biortech.2017.05.177. PMid: 28628990. | spa |
dcterms.bibliographicCitation | [47]BekirogullariM,FragkopoulosIS,PittmanJK,etal.Productionoflipid-basedfuelsand chemicalsfrommicroalgae:Anintegratedexperimentalandmodel-basedoptimiza- tionstudy.AlgalRes2017;23:78–87. https://doi.org/10.1016/j.algal.2016.12.015. | spa |
dcterms.bibliographicCitation | [48]DarveheiP,BahriPA,MoheimaniNR.Modeldevelopmentforthegrowthof microalgae:Areview.RenewSustainEnergyRev2018;97:233–58. https://doi.org/ 10.1016/j.rser.2018.08.027. | spa |
dcterms.bibliographicCitation | [49]laSieglerDH,McCaffreyWC,BurrellRE,etal.Optimizationofmicroalgalproductiv- ityusinganadaptive,non-linearmodelbasedstrategy.BioresourTechnol2012;104: 537–46. https://doi.org/10.1016/j.biortech.2011.10.029. PMid:22119433. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1016/j.ejbt.2020.01.006. | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Dynamicmodel Nonaxenicconsortium Photon flux density Masstransfer Leachate Landfill Ammonium Nitrate Carbondioxide | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/draft | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Química | spa |
dc.publisher.sede | Sede Norte | spa |