Mostrar el registro sencillo del ítem

dc.contributor.authorEspitia-Almeida, Fabian
dc.contributor.otherDíaz-Uribe, Carlos
dc.contributor.otherVallejo, William
dc.contributor.otherGómez-Camargo, Doris
dc.contributor.otherRomero Bohórquez, Arnold R.
dc.date.accessioned2022-11-15T21:16:14Z
dc.date.available2022-11-15T21:16:14Z
dc.date.issued2020-04-19
dc.date.submitted2020-03-23
dc.identifier.urihttps://hdl.handle.net/20.500.12834/965
dc.description.abstractIn this study, a family of porphyrins based on 5,10,15,20-Tetrakis(4-ethylphenyl)porphyrin (1, Ph) and six metallo-derivatives (Zn2+(2, Ph-Zn), Sn4+(3, Ph-Sn), Mn2+ (4, Ph-Mn), Ni2+ (5, Ph-Ni), Al3+ (6, Ph-Al), and V3+ (7, Ph-V)) were tested as photosensitizers for photodynamic therapy against Leishmania braziliensis and panamensis. The singlet oxygen quantum yield value (FD) for (1–7) was measured using 1,3-diphenylisobenzofuran (DPBF) as a singlet oxygen trapping agent and 5,10,15,20-(tetraphenyl)-porphyrin (H2TPP) as a reference standard; besides, parasite viability was estimated by the MTT assay. After metal insertion into the porphyrin core, the FD increased from 0.76–0.90 and cell viability changed considerably. The FD and metal type changed the cytotoxic activity. Finally, (2) showed both the highest FD (0.90) and the best photodynamic activity against the parasites studied (IC50 of 1.2 M).spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMDPI AGspa
dc.titleIn vitro anti-leishmanial effect of metallic meso-substituted porphyrin derivatives against Leishmania braziliensis and Leishmania panamensis promastigotes propertiesspa
dcterms.bibliographicCitation1. WHO Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 12 February 2019).spa
dcterms.bibliographicCitation2. Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M.; WHO Leishmaniasis Control Team. LeishmaniasisWorldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671spa
dcterms.bibliographicCitation3. Khademvatan, S.; Salmanzadeh, S.; Foroutan-Rad, M.; Bigdeli, S.; Hedayati-Rad, F.; Saki, J.; Heydari-Gorji, E. Spatial distribution and epidemiological features of cutaneous leishmaniasis in southwest of Iran. Alex. J. Med. 2017, 53, 93–98.spa
dcterms.bibliographicCitation4. Steverding, D. The history of leishmaniasis. Parasit. Vectors 2017, 10, 82.spa
dcterms.bibliographicCitation5. Reithinger, R.; Dujardin, J.-C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous leishmaniasis. Lancet Infect. Dis. 2007, 7, 581–596.spa
dcterms.bibliographicCitation6. Desjeux, P. Leishmaniasis: Current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis. 2004, 27, 305–318.spa
dcterms.bibliographicCitation7. Patiño-Londoño, S.Y.; Salazar, L.M.; Acero, C.T.; Bernal, I.D.V. Aspectos socioepidemiológicos y culturales de la leishmaniasis cutánea concepciones, actitudes y prácticas en las poblaciones de Tierralta y Valencia, (Córdoba, Colombia). Salud Colect. 2017, 13, 123–138.spa
dcterms.bibliographicCitation8. Gore Saravia, N.; Nicholls, R.S. Leishmaniasis: Un reto para la salud pública que exige concertación de voluntades y esfuerzos. Biomédica 2012, 26, 5.spa
dcterms.bibliographicCitation9. Singh, S.; Sivakumar, R. Challenges and new discoveries in the treatment of leishmaniasis. J. Infect. Chemother. 2004, 10, 307–315.spa
dcterms.bibliographicCitation10. Lockwood, D.; Moore, E. Treatment of visceral leishmaniasis. J. Glob. Infect. Dis. 2010, 2, 151.spa
dcterms.bibliographicCitation11. Tuon, F.F.; Amato, V.S.; Graf, M.E.; Siqueira, A.M.; Nicodemo, A.C.; Neto, V.A. Treatment of New World cutaneous leishmaniasis - a systematic review with a meta-analysis. Int. J. Dermatol. 2008, 47, 109–124.spa
dcterms.bibliographicCitation12. Monge-Maillo, B.; López-Vélez, R. Therapeutic Options for OldWorld Cutaneous Leishmaniasis and New World Cutaneous and Mucocutaneous Leishmaniasis. Drugs 2013, 73, 1889–1920.spa
dcterms.bibliographicCitation13. Araujo-Melo, M.H.; Meneses, A.M.; Schubach, A.O.; Moreira, J.S.; Conceição-Silva, F.; Salgueiro, M.M.; Pimentel, M.I.F.; Araújo-Silva, M.; Oliveira, R.V.C.; Carmo, C.N.; et al. Risk factors associated with dizziness during treatment of mucosal leishmaniasis with meglumine antimoniate: 16-year retrospective study of cases from Rio de Janeiro, Brazil. J. Laryngol. Otol. 2010, 124, 1056–1060.spa
dcterms.bibliographicCitation14. Oliveira, L.F.; Schubach, A.O.; Martins, M.M.; Passos, S.L.; Oliveira, R.V.; Marzochi, M.C.; Andrade, C.A. Systematic review of the adverse e ects of cutaneous leishmaniasis treatment in the New World. Acta Trop. 2011, 118, 87–96.spa
dcterms.bibliographicCitation15. Berman, J.D. Chemotherapy for leishmaniasis: Biochemical mechanisms, clinical e cacy, and future strategies. Rev. Infect. Dis. 1988, 10, 560–586.spa
dcterms.bibliographicCitation16. Heruti, R.J.; Sharabi, Y.; Arbel, Y.; Shochat, T.; Swartzon, M.; Brenner, G.; Justo, D. ORIGINAL RESEARCH—EPIDEMIOLOGY: The Prevalence of Erectile Dysfunction Among Hypertensive and Prehypertensive Men Aged 25–40 Years. J. Sex. Med. 2007, 4, 596–601.spa
dcterms.bibliographicCitation17. Olliaro, P.L.; Guerin, P.J.; Gerstl, S.; Haaskjold, A.A.; Rottingen, J.-A.; Sundar, S. Treatment options for visceral leishmaniasis: A systematic review of clinical studies done in India, 1980–2004. Lancet Infect. Dis. 2005, 5, 763–774.spa
dcterms.bibliographicCitation18. Renslo, A.R.; McKerrow, J.H. Drug discovery and development for neglected parasitic diseases. Nat. Chem. Biol. 2006, 2, 701–710.spa
dcterms.bibliographicCitation19. Al-Qahtani, A.; Alkahtani, S.; Kolli, B.; Tripathi, P.; Dutta, S.; Al-Kahtane, A.A.; Jiang, X.J.; Ng, D.K.P.; Chang, K.P. Aminophthalocyanine-mediated photodynamic inactivation of Leishmania tropica. Antimicrob. Agents Chemother. 2016, 60, 2003–2011.spa
dcterms.bibliographicCitation20. Peloi, L.S.; Biondo, C.E.G.; Kimura, E.; Politi, M.J.; Lonardoni, M.V.C.; Aristides, S.M.A.; Dorea, R.C.C.; Hioka, N.; Silveira, T.G.V. Photodynamic therapy for American cutaneous leishmaniasis: The e cacy of methylene blue in hamsters experimentally infected with Leishmania (Leishmania) amazonensis. Exp. Parasitol. 2011, 128, 353–356.spa
dcterms.bibliographicCitation21. Jeong, H.-G.; Choi, M.-S. Design and Properties of Porphyrin-based Singlet Oxygen Generator. Isr. J. Chem. 2016, 56, 110–118.spa
dcterms.bibliographicCitation22. Josefsen, L.B.; Boyle, R.W. Photodynamic Therapy and the Development of Metal-Based Photosensitisers. Met. Based Drugs 2008, 2008.spa
dcterms.bibliographicCitation23. Skwor, T.A.; Klemm, S.; Zhang, H.; Schardt, B.; Blaszczyk, S.; Bork, M.A. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli: A metalloporphyrin comparison. J. Photochem. Photobiol. B Biol. 2016, 165, 51–57.spa
dcterms.bibliographicCitation24. Mathai, S.; Smith, T.A.; Ghiggino, K.P. Singlet oxygen quantum yields of potential porphyrin-based photosensitisers for photodynamic therapy. Photochem. Photobiol. Sci. 2007, 6, 995–1002.spa
dcterms.bibliographicCitation25. Ormond, A.B.; Freeman, H.S. E ects of substituents on the photophysical properties of symmetrical porphyrins. Dye Pigment. 2013, 96, 440–448.spa
dcterms.bibliographicCitation26. Cauzzo, G.; Gennari, C.; Jori, G.; Spikes, J.D. The e ect of chemical structure on the photosensitizing e ciencies of porphyrins. Photochem. Photobiol. 1977, 25, 389–395.spa
dcterms.bibliographicCitation27. Lavi, A.; Weitman, H.; Holmes, R.T.; Smith, K.M.; Ehrenberg, B. The depth of porphyrin in a membrane and the membrane’s physical properties a ect the photosensitizing e ciency. Biophys. J. 2002, 82, 2101–2110.spa
dcterms.bibliographicCitation28. Lesar, A.; Begi´c, G.; Malatesti, N.; Gobin, I. Innovative approach in Legionella water treatment with photodynamic cationic amphiphilic porphyrin. Water Sci. Technol. Water Supply 2019, 19, 1473–1479.spa
dcterms.bibliographicCitation29. Rojkiewicz, M.; Ku´s, P.; Kozub, P.; Kempa, M. The synthesis of new potential photosensitizers. Dye Pigment. 2013, 99, 627–635.spa
dcterms.bibliographicCitation30. Thomas, M.; Craik, J.D.; Tovmasyan, A.; Batinic-Haberle, I.; Benov, L.T. Amphiphilic cationic Zn-porphyrins with high photodynamic antimicrobial activity. Future Microbiol. 2015, 10, 709–724.spa
dcterms.bibliographicCitation31. Ezzeddine, R.; Al-Banaw, A.; Tovmasyan, A.; Craik, J.D.; Batinic-Haberle, I.; Benov, L.T. E ect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(2) N-Alkylpyridylporphyrins. J. Biol. Chem. 2013, 288, 36579–36588.spa
dcterms.bibliographicCitation32. Hosomizu, K.; Oodoi, M.; Umeyama, T.; Matano, Y.; Yoshida, K.; Isoda, S.; Isosomppi, M.; Tkachenko, N.V.; Lemmetyinen, H.; Imahori, H. Substituent e ects of porphyrins on structures and photophysical properties of amphiphilic porphyrin aggregates. J. Phys. Chem. B 2008, 112, 16517–16524.spa
dcterms.bibliographicCitation33. Stasheuski, A.S.; Galievsky, V.A.; Knyukshto, V.N.; Ghazaryan, R.K.; Gyulkhandanyan, A.G.; Gyulkhandanyan, G.V.; Dzhagarov, B.M.Water-Soluble Pyridyl Porphyrins with Amphiphilic N-Substituents: Fluorescent Properties and Photosensitized Formation of Singlet Oxygen. J. Appl. Spectrosc. 2014, 80, 813–823.spa
dcterms.bibliographicCitation34. Gardner, D.M.; Taylor, V.M.; Cedeño, D.L.; Padhee, S.; Robledo, S.M.; Jones, M.A.; Lash, T.D.; Vélez, I.D. Association of Acenaphthoporphyrins with Liposomes for the Photodynamic Treatment of Leishmaniasis. Photochem. Photobiol. 2010, 86, 645–652.spa
dcterms.bibliographicCitation35. Pinto, J.G.; Pereira, A.H.C.; de Oliveira, M.A.; Kurachi, C.; Raniero, L.J.; Ferreira-Strixino, J. Chlorin E6 phototoxicity in L. major and L. braziliensis promastigotes—In vitro study. Photodiagn. Photodyn. Ther. 2016, 15, 19–24.spa
dcterms.bibliographicCitation36. Bristow, C.-A.; Hudson, R.; Paget, T.A.; Boyle, R.W. Potential of cationic porphyrins for photodynamic treatment of cutaneous Leishmaniasis. Photodiagn. Photodyn. Ther. 2006, 3, 162–167.spa
dcterms.bibliographicCitation37. Gomes, M.L.; DeFreitas-Silva, G.; dos Reis, P.G.; Melo, M.N.; Frézard, F.; Demicheli, C.; Idemori, Y.M. Synthesis and characterization of bismuth(III) and antimony(V) porphyrins: High antileishmanial activity against antimony-resistant parasite. JBIC J. Biol. Inorg. Chem. 2015, 20, 771–779.spa
dcterms.bibliographicCitation38. Andrade, C.G.; Figueiredo, R.C.B.Q.; Ribeiro, K.R.C.; Souza, L.I.O.; Sarmento-Neto, J.F.; Rebouças, J.S.; Santos, B.S.; Ribeiro, M.S.; Carvalho, L.B.; Fontes, A. Photodynamic e ect of zinc porphyrin on the promastigote and amastigote forms of Leishmania braziliensis. Photochem. Photobiol. Sci. 2018, 17, 482–490.spa
dcterms.bibliographicCitation39. Espitia-Almeida, F.; Díaz-Uribe, C.; Vallejo,W.; Gómez-Camargo, D.; Romero-Bohorquez, A.R.; Schott, E.; Zarate, X. Synthesis and Characterization of 5,10,15,20-Tetrakis(4-ethylphenyl)porphyrin and (Zn2+, Mn2+, Sn2+, Ni2+, Al3+, V3+)-Derivatives: Photophysical and DFT study. ChemistrySelect 2019, 4, 6290–6294.spa
dcterms.bibliographicCitation40. Dube, E.; Nwaji, N.; Oluwole, D.O.; Mack, J.; Nyokong, T. Investigation of photophysicochemical properties of zinc phthalocyanines conjugated to metallic nanoparticles. J. Photochem. Photobiol. A Chem. 2017, 349, 148–161.spa
dcterms.bibliographicCitation41. Zoltan, T.; Vargas, F.; López, V.; Chávez, V.; Rivas, C.; Ramírez, Á.H. Influence of charge and metal coordination of meso-substituted porphyrins on bacterial photoinactivation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 747–756.spa
dcterms.bibliographicCitation42. Guillaumot, D.; Issawi, M.; Da Silva, A.; Leroy-Lhez, S.; Sol, V.; Riou, C. Synergistic enhancement of tolerance mechanisms in response to photoactivation of cationic tetra (N-methylpyridyl) porphyrins in tomato plantlets. JPB 2016, 156, 69–78.spa
dcterms.bibliographicCitation43. Bonnett, R. Chemical Aspects of Photodynamic Therapy; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781482296952.spa
dcterms.bibliographicCitation44. Pummer, A.; Knüttel, H.; Hiller, K.-A.; Buchalla,W.; Cieplik, F.; Maisch, T. Antimicrobial e cacy of irradiation with visible light on oral bacteria in vitro: A systematic review. Future Med. Chem. 2017, 9, 1557–1574.spa
dcterms.bibliographicCitation45. Ribeiro, A.P.D.; Andrade, M.C.; Bagnato, V.S.; Vergani, C.E.; Primo, F.L.; Tedesco, A.C.; Pavarina, A.C. Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions. Lasers Med. Sci. 2015, 30, 549–559.spa
dcterms.bibliographicCitation46. Song, D.; Lindoso, J.A.L.; Oyafuso, L.K.; Kanashiro, E.H.Y.; Cardoso, J.L.; Uchoa, A.F.; Tardivo, J.P.; Baptista, M.S. Photodynamic Therapy Using Methylene Blue to Treat Cutaneous Leishmaniasis. Photomed. Laser Surg. 2011, 29, 711–715.spa
dcterms.bibliographicCitation47. Hernández, I.P.; Montanari, J.; Valdivieso, W.; Morilla, M.J.; Romero, E.L.; Escobar, P. In vitro phototoxicity of ultradeformable liposomes containing chloroaluminum phthalocyanine against New World Leishmania species. J. Photochem. Photobiol. B Biol. 2012, 117, 157–163.spa
dcterms.bibliographicCitation48. Piñero, J.E.; Jiménez, I.A.; Valladares, B.; Ravelo, Á.G. Advances in leishmaniasis chemotherapy and new relevant patents. Expert Opin. Ther. Pat. 2004, 14, 1113–1123.spa
dcterms.bibliographicCitation49. Chakravarty, J.; Sundar, S. Drug Resistance in Leishmaniasis. J. Glob. Infect. Dis. 2010, 2, 167.spa
dcterms.bibliographicCitation50. Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug Resistance in Leishmaniasis. Clin. Microbiol. Rev. 2006, 19, 111–126.spa
dcterms.bibliographicCitation51. Ouellette, M.; Papadopoulou, B. Mechanisms of drug resistance in Leishmania. Parasitol. Today 1993, 9, 150–153.spa
dcterms.bibliographicCitation52. Skovsen, E.; Snyder, J.W.; Lambert, J.D.; Ogilby, P.R. Lifetime and Di usion of Singlet Oxygen in a Cell. J. Phys. Chesm. B 2005, 109, 8570–8573.spa
dcterms.bibliographicCitation53. Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 2nd ed.; Oxford University Press: New York, NY, USA, 2015; ISBN 9780198717485.spa
dcterms.bibliographicCitation54. Breitenbach, T.; Kuimova, M.K.; Gbur, P.; Hatz, S.; Schack, N.B.; Pedersen, B.W.; Lambert, J.D.C.; Poulsen, L.; Ogilby, P.R. Photosensitized production of singlet oxygen: Spatially-resolved optical studies in single cells. Photochem. Photobiol. Sci. 2009, 8, 442–452.spa
dcterms.bibliographicCitation55. Adler, A.D.; Longo, F.R.; Shergalis, W. Mechanistic Investigations of Porphyrin Syntheses. I. Preliminary Studies on ms-Tetraphenylporphin. J. Am. Chem. Soc. 1964, 86, 3145–3149.spa
dcterms.bibliographicCitation56. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63.spa
dcterms.bibliographicCitation57. Taylor, V.M.; Muñoz, D.L.; Cedeño, D.L.; Vélez, I.D.; Jones, M.A.; Robledo, S.M. Leishmania tarentolae: Utility as an in vitro model for screening of antileishmanial agents. Exp. Parasitol. 2010, 126, 471–475.spa
dcterms.bibliographicCitation58. Akilov, O.E.; Kosaka, S.; O’Riordan, K.; Hasan, T. Parasiticidal e ect of -aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells. Exp. Dermatol. 2007, 16, 651–660.spa
dcterms.bibliographicCitation59. Kiderlen, A.F.; Kaye, P.M.Amodified colorimetric assay of macrophage activation for intracellular cytotoxicity against Leishmania parasites. J. Immunol. Methods 1990, 127, 11–18.spa
dcterms.bibliographicCitation60. Durmu¸s, M.; Nyokong, T. Photophysicochemical and fluorescence quenching studies of benzyloxyphenoxy-substituted zinc phthalocyanines. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 69, 1170–1177.spa
dcterms.bibliographicCitation61. Khodov, I.A.; Nikiforov, M.Y.; Alper, G.A.; Mamardashvili, G.M.; Mamardashvili, N.Z.; Koifman, O.I. Synthesis and spectroscopic characterization of Ru(II) and Sn(IV)-porphyrins supramolecular complexes. J. Mol. Struct. 2015, 1081, 426–430.spa
dcterms.bibliographicCitation62. Moreira, M.E.C.; Del Portillo, H.A.; Milder, R.V.; Balanco, J.M.F.; Barcinski, M.A. Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J. Cell. Physiol. 1996, 167, 305–313.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doidoi:10.3390/molecules25081887
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsporphyrin; metalloporphyrins; photodynamic therapy; Leishmania braziliensis; Leishmania panamensis; singlet oxygenspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por