Mostrar el registro sencillo del ítem

dc.contributor.authorAcero, M. A.
dc.date.accessioned2022-11-15T21:15:43Z
dc.date.available2022-11-15T21:15:43Z
dc.date.issued2020-11-10
dc.date.submitted2020-06-26
dc.identifier.urihttps://hdl.handle.net/20.500.12834/963
dc.description.abstractThe Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceCornell Universityspa
dc.titleNeutrino interaction classification with a convolutional neural network in the DUNE far detectorspa
dcterms.bibliographicCitation[1] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962)spa
dcterms.bibliographicCitation[2] B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968), [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)].spa
dcterms.bibliographicCitation[3] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998), arXiv:hep-ex/9807003 [hep-ex].spa
dcterms.bibliographicCitation[4] B. Aharmim et al. (SNO), Phys. Rev. C 72, 055502 (2005), arXiv:nucl-ex/0502021 [nucl-ex].spa
dcterms.bibliographicCitation5] T. Araki et al. (KamLAND), Phys. Rev. Lett. 94, 081801 (2005), arXiv:hep-ex/0406035 [hepex].spa
dcterms.bibliographicCitation[6] M. H. Ahn et al. (K2K), Phys. Rev. D 74, 072003 (2006), arXiv:hep-ex/0606032 [hep-ex]spa
dcterms.bibliographicCitation[7] F. P. An et al. (Daya Bay), Phys. Rev. Lett. 108, 171803 (2012), arXiv:1203.1669 [hep-ex].spa
dcterms.bibliographicCitation[8] P. Adamson et al. (MINOS), Phys. Rev. Lett. 112, 191801 (2014), arXiv:1403.0867.spa
dcterms.bibliographicCitation9] M. Acero et al. (NOvA), Phys. Rev. Lett. 123, 151803 (2019), arXiv:1906.04907 [hep-ex].spa
dcterms.bibliographicCitation[10] K. Abe et al. (T2K), Nature 580, 339 (2020), arXiv:1910.03887 [hep-ex].spa
dcterms.bibliographicCitation[11] B. Abi et al. (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics (2020), 2002.03005spa
dcterms.bibliographicCitation[12] T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956)spa
dcterms.bibliographicCitation[13] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964)spa
dcterms.bibliographicCitation[14] B. Abi et al. (DUNE), arXiv:2006.16043 [hep-ex] (2020), accepted by Eur. Phys. J. C.spa
dcterms.bibliographicCitation[15] E. D. Church, arXiv:1311.6774 [physics.ins-det] (2013).spa
dcterms.bibliographicCitation[16] S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A 506, 250 (2003).spa
dcterms.bibliographicCitation[17] M. Alam et al., arXiv:1512.06882 [hep-ph] (2015).spa
dcterms.bibliographicCitation[18] J. S. Marshall and M. A. Thomson, Eur. Phys. J. C75, 439 (2015), arXiv:1506.05348 [physics.data-an].spa
dcterms.bibliographicCitation[19] R. Acciarri et al. (MicroBooNE), Eur. Phys. J. C78, 82 (2018), arXiv:1708.03135 [hep-ex]spa
dcterms.bibliographicCitation[20] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, Neural Computation 1, 541 (1989).spa
dcterms.bibliographicCitation[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Advances in Neural Information Processing Systems 25 , edited by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran Associates, Inc., 2012) pp. 1097–1105spa
dcterms.bibliographicCitation22] A. Aurisano et al., Journal of Instrumentation 11 (09), P09001, arXiv:1604.01444.spa
dcterms.bibliographicCitation[23] R. Acciarri et al. (MicroBooNE), JINST 12 (03), P03011, arXiv:1611.05531 [physics.ins-det].spa
dcterms.bibliographicCitation[24] Y. Bengio, A. Courville, and P. Vincent, IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1798 (2013).spa
dcterms.bibliographicCitation[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016) http://www. deeplearningbook.orgspa
dcterms.bibliographicCitation[26] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, and T. Chen, Pattern Recognition 77, 354 (2018)spa
dcterms.bibliographicCitation[27] Y. LeCun, K. Kavukcuoglu, and C. Farabet, in ISCAS 2010 - 2010 IEEE International Symposium on Circuits and Systems, ISCAS 2010 - 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems (2010) pp. 253–256, 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, ISCAS 2010 ; Conference date: 30-05-2010 Through 02-06-2010.spa
dcterms.bibliographicCitation[28] W. Bhimji, S. A. Farrell, T. Kurth, M. Paganini, Prabhat, and E. Racah, Journal of Physics: Conference Series 1085, 042034 (2018).spa
dcterms.bibliographicCitation[29] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A. Schwartzman, Journal of High Energy Physics 2016, 69 (2016), arXiv:1511.05190 [hep-ph]spa
dcterms.bibliographicCitation[30] P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, Journal of High Energy Physics 2017, 110 (2017), arXiv:1612.01551.spa
dcterms.bibliographicCitation[31] A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel, A. Aurisano, K. Terao, and T. Wongjirad, Nature 560, 41 (2018).spa
dcterms.bibliographicCitation[32] C. Adams, M. Del Tutto, J. Asaadi, M. Bernstein, E. Church, R. Guenette, J. M. Rojas, H. Sullivan, and A. Tripathi, JINST 15 (04), P04009, arXiv:1912.10133 [physics.ins-det]spa
dcterms.bibliographicCitation[33] K. He, X. Zhang, S. Ren, and J. Sun, CoRR abs/1512.03385 (2015), arXiv:1512.03385.spa
dcterms.bibliographicCitation[34] K. He, X. Zhang, S. Ren, and J. Sun, CoRR abs/1603.05027 (2016), arXiv:1603.05027.spa
dcterms.bibliographicCitation[35] J. Hu, L. Shen, and G. Sun, CoRR abs/1709.01507 (2017), arXiv:1709.01507spa
dcterms.bibliographicCitation[36] C. Szegedy et al., CoRR abs/1409.4842 (2014), arXiv:1409.4842.spa
dcterms.bibliographicCitation[37] F. Chollet et al., Keras, https://github.com/keras-team/keras (2015).spa
dcterms.bibliographicCitation[38] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., in OSDI, Vol. 16 (2016) pp. 265–283, arXiv:1605.08695 [cs.DC].spa
dcterms.bibliographicCitation[39] R. Acciarri et al. (DUNE), Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) (2015), arXiv:1512.06148 [physics.ins-det]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.48550/arXiv.2006.15052 Focus to learn more
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por