Mostrar el registro sencillo del ítem

dc.contributor.authorManjarres Pinzón, K
dc.contributor.otherMendoza Meza, D
dc.contributor.otherArias Zabala, M
dc.contributor.otherCorrea Londoño, G
dc.contributor.otherRodriguez Sandoval, E
dc.date.accessioned2022-11-15T21:15:10Z
dc.date.available2022-11-15T21:15:10Z
dc.date.issued2022-01-05
dc.date.submitted2021-01-25
dc.identifier.citationKatherine MANJARRES-PINZÓN, Dary MENDOZA-MEZA and Mario ARIAS-ZABALA et al. Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale. Food Science and Technology. DOI: 10.1590/fst.04221spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/960
dc.description.abstractThe study of xylose reductase (XR) - one of the key enzymes in the production of xylitol - is important in the fermentation process to have maximum efficiency in the bioconversion of xylose to xylitol in lignocellulosic hydrolysate. The aim was to evaluate the effect of agitation rate and dissolved oxygen at 7 L bioreactor scale on the production of xylose reductase (XR) from Candida tropicalis during the bioconversion of xylose into xylitol in the non-detoxified oil palm empty fruit bunch (OPEFB) hydrolysate. The highest xylose consumption (95.5%) and the maximum xylitol production (5.46 g.L-1) were presented under 30% dissolved oxygen and 50 rpm. The maximum XR activity (0.646 U mg-1 protein) was obtained after 144 h of fermentation and at the same conditions of dissolved oxygen and agitation rate mentioned above. The oxygen availability influences the XR activity of C. tropicalis and the xylitol production, observing a xylitol yield factor (YP/S) of 0.27 g.g-1 and volumetric productivity (QP) of 0.33 g.L-1 h-1. At lower dissolved oxygen regardless of the agitation conditions evaluated, an increase in xylitol production was evidenced.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceFood Science and Technologyspa
dc.titleEffects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scalespa
dcterms.bibliographicCitationAlbuquerque, T. L., Silva, I. J. Jr., Macedo, G. R., & Rocha, M. V. P. (2014). Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochemistry, 49(11), 1779-1789. http:// dx.doi.org/10.1016/j.procbio.2014.07.010.spa
dcterms.bibliographicCitationArruda, P. V., Rodrigues, R. C. L B., Silva, D. D. V. & Felipe, M. G. A. (2011). Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate. Biodegradation, 22(4), 815-822. http://doi: 10.1007/s10532-010-9397-1.spa
dcterms.bibliographicCitationBradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Analytical Biochemistry, 72(1-2), 248-254. http://dx.doi. org/10.1016/0003-2697(76)90527-3. PMid:942051.spa
dcterms.bibliographicCitationBranco, R. F., Santos, J. C., Sarrouh, B. F., Rivaldi, J. D., Pessoa, A. Jr., & Silva, S. S. (2009). Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. Journal of Chemical Technology and Biotechnology, 84(3), 326-330. http://dx.doi.org/10.1002/jctb.2042.spa
dcterms.bibliographicCitationCocotle-Ronzon, Y., Zendejas-Zaldo, M., Castillo-Lozano, M. L., & Aguilar-Uscanga, M. G. (2012). Preliminary characterization of xylose reductase partially purified by reversed micelles from Candida tropicalis IEC5-ITV, an indigenous xylitol-producing strain. Advances in Chemical Engineering and Science, 2(1), 9-14. http://dx.doi.org/10.4236/aces.2012.21002.spa
dcterms.bibliographicCitationDasgupta, D., Bandhu, S., Adhikari, D. K., & Ghosh, D. (2017). Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiological Research, 197, 9-21. http://dx.doi.org/10.1016/j. micres.2016.12.012. PMid:28219529.spa
dcterms.bibliographicCitationFaria, L. F. F., Gimenes, M. A. P., Nobrega, R., & Pereira, N. (2002). Influence of oxygen availability on cell growth and xylitol production by Candida guilliermondii. In: M. Finkelstein, J. D. McMillan, & B. H. Davison (Eds.), Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology Part A Enzyme Engineering and Biotechnology (pp. 449-458). Totowa: Humana Press. http://dx.doi. org/10.1007/978-1-4612-0119-9_37spa
dcterms.bibliographicCitationFerrer, A., Requejo, A., Rodríguez, A., & Jiménez, L. (2013). Influence of temperature, time, liquid/solid ratio and sulfuric acid concentration on the hydrolysis of palm empty fruit bunches. Bioresource Technology, 129, 506-511. http://dx.doi.org/10.1016/j.biortech.2012.10.081. PMid:23266852.spa
dcterms.bibliographicCitationGírio, F. M., Roseiro, J. C., Sá-Machado, P., Duarte-Reis, A. R., & Amaral-Collaço, M. T. (1994). Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzyme and Microbial Technology, 16(12), 1074-1078. http://dx.doi. org/10.1016/0141-0229(94)90145-7.spa
dcterms.bibliographicCitationGurpilhares, D. B., Hasmann, F. A., Pessoa, A. Jr., & Roberto, I. C. (2009). The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. Journal of Industrial Microbiology & Biotechnology, 36(1), 87-93. http://dx.doi.org/10.1007/s10295-008-0475-x. PMid:18830730.spa
dcterms.bibliographicCitationHernández-Pérez, A. F., Arruda, P. V., & Felipe, M. G. A. (2016). Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Brazilian Journal of Microbiology, 47(2), 489-496. http:// dx.doi.org/10.1016/j.bjm.2016.01.019. PMid:26991282.spa
dcterms.bibliographicCitationKarhumaa, K., Garcia-Sanchez, R., Hahn-Hägerdal, B., & Gorwa- Grauslund, M. F. (2007). Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 6(1), 5. http://dx.doi.org/10.1186/1475-2859-6-5. PMid:17280608.spa
dcterms.bibliographicCitationKim, S. Y., Kim, J. H., & Oh, D. K. (1997). Improvement of xylitol production by controlling supply in Candida parapsilosis. Journal of Fermentation and Bioengineering, 83(3), 267-270. http://dx.doi. org/10.1016/S0922-338X(97)80990-7.spa
dcterms.bibliographicCitationKklaif, H. F., Nasser, J. M., & Shakir, K. A. (2020). Production of xylose reductase and xylitol by Candida guilliermondii using wheat straw hydrolysates. Iraqi Journal of Agricultural Sciences, 51(6), 1653-1660. http://dx.doi.org/10.36103/ijas.v51i6.1192.spa
dcterms.bibliographicCitationKresnowati, M. T. A. P., Setiadi, T., Tantra, T. M., & Rusdi, D. (2016). Microbial production of xylitol from oil palm empty fruit bunch hydrolysate: effects of inoculum and pH. Journal of Engineering and Technological Sciences, 48(5), 523-533. http://dx.doi.org/10.5614/j. eng.technol.sci.2016.48.5.2.spa
dcterms.bibliographicCitationManaf, S. F. A., Luthfi, A. A. I., Jamaliah, M. J., & Harun, S. (2017). Interaction effects of pH and inhibitors in oil palm frond (OPF) hemicelullosic hydrolysate on xylitol production: a statistical study. The Journal of Physiological Sciences; JPS, 28(Suppl. 1), 241-255. http://dx.doi.org/10.21315/jps2017.28.s1.16.spa
dcterms.bibliographicCitationManjarres-Pinzon, K., Arias-Zabala, M., Correa-Londono, G., & Rodriguez-Sandoval, E. (2017). Xylose recovery from dilute-acid hydrolysis of oil palm (Elaeis guineensis) empty fruit bunches for xylitol production. African Journal of Biotechnology, 16(41), 1997- 2008. http://dx.doi.org/10.5897/AJB2017.16214.spa
dcterms.bibliographicCitationMardawati, E., Wira, D. W., Kresnowati, M., Purwadi, R., & Setiadi, T. (2015). Microbial production of xylitol from oil palm empty fruit bunches hydrolysate: the effect of glucose concentration. Journal of the Japan Institute of Energy, 94(8), 769-774. http://dx.doi. org/10.3775/jie.94.769.spa
dcterms.bibliographicCitationMareczky, Z., Fehér, A., Fehér, C., Barta, Z., & Réczey, K. (2016). Effects of pH and aeration conditions on xylitol production by Candida and Hansenula yeasts. Periodica Polytechnica. Chemical Engineering, 60(1), 54-59. http://dx.doi.org/10.3311/PPch.8116.spa
dcterms.bibliographicCitationMartínez, E. A., & Santos, J. A. F. (2012). Influence of the use of rice bran extract as a source of nutrients on xylitol production. Food Science and Technology, 32(2), 308-313. http://dx.doi.org/10.1590/ S0101-20612012005000036.spa
dcterms.bibliographicCitationMoraes, E. J. C., Silva, D. D. V., Dussán, K. J., Tesche, L. Z., Silva, J. B. A., Rai, M., & Felipe, M. G. A. (2020). Xylitol-sweetener production from barley straw: optimization of acid hydrolysis condition with the energy consumption simulation. Waste and Biomass Valorization, 11(5), 1837-1849. http://dx.doi.org/10.1007/s12649-018-0501-9.spa
dcterms.bibliographicCitationMussatto, S. I., & Roberto, I. C. (2005). Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii. Brazilian Archives of Biology and Technology, 48(3), 497-502. http://dx.doi. org/10.1590/S1516-89132005000300020.spa
dcterms.bibliographicCitationNiño-Camacho, L., & Torres-Sáenz, R. (2010). Implementación de diferentes técnicas analíticas para la determinación de biomasa bacteriana de cepas Pseudomonas putida biodegradadoras de fenol. Revista ION, 23, 41-46. http://dx.doi.org/10.18273/revion.spa
dcterms.bibliographicCitationPrakasham, R. S., Rao, R. S., & Hobbs, P. J. (2009). Current trends in biotechnological production of xylitol and future prospects. Current Trends in Biotechnology and Pharmacy, 3(1), 8-36.spa
dcterms.bibliographicCitationRafiqul, I. S. M., & Sakinah, A. M. M. (2014). Production of xylose reductase from adapted Candida tropicalis grown in sawdust hydrolysate. Biocatalysis and Agricultural Biotechnology, 3(4), 227-235. http://dx.doi.org/10.1016/j.bcab.2014.05.003 » http://dx.doi.org/10.1016/j.bcab.2014.05.003spa
dcterms.bibliographicCitationRahman, S. H. A., Choudhury, J. P., Ahmad, A. L., & Kamaruddin, A. H. (2007). Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technology, 98(3), 554-559. http://dx.doi.org/10.1016/j.biortech.2006.02.016 PMid:16647852. » http://dx.doi.org/10.1016/j.biortech.2006.02.016spa
dcterms.bibliographicCitationRao, V. L., Goli, J. K., Gentela, J., & Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresource Technology, 213, 299-310. http://dx.doi.org/10.1016/j.biortech.2016.04.092 PMid:27142629. » http://dx.doi.org/10.1016/j.biortech.2016.04.092spa
dcterms.bibliographicCitationSene, L., Arruda, P. V., Oliveira, S. M. M., & Felipe, M. G. A. (2011). Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Brazilian Journal of Microbiology, 42(3), 1141-1146. http://dx.doi.org/10.1590/S1517-83822011000300036 PMid:24031733. » http://dx.doi.org/10.1590/S1517-83822011000300036spa
dcterms.bibliographicCitationSilva, D. D. V., Mancilha, I. M., Silva, S. S., & Felipe, M. G. A. (2007). Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in sugarcane bagasse hydrolysate. Brazilian Archives of Biology and Technology, 50(2), 207-215. http://dx.doi.org/10.1590/S1516-89132007000200005 » http://dx.doi.org/10.1590/S1516-89132007000200005spa
dcterms.bibliographicCitationTizazu, B. Z., Roy, K., & Moholkar, V. S. (2018). Mechanistic investigations in ultrasound-assisted xylitol fermentation. Ultrasonics Sonochemistry, 48, 321-328. http://dx.doi.org/10.1016/j.ultsonch.2018.06.014 PMid:30080557. » http://dx.doi.org/10.1016/j.ultsonch.2018.06.014spa
dcterms.bibliographicCitationVallejos, M. E., & Area, M. C. (2017). Xylitol as bioproduct from the agro and forest biorefinery. In: A. M. Grumezescu, & A. M. Holban (Eds.), Food Bioconversion (1st ed, Chapter 12, pp. 411-432). New York: Elsevier Academic Press. http://dx.doi.org/10.1016/B978-0-12-811413-1.00012-7 » http://dx.doi.org/10.1016/B978-0-12-811413-1.00012-7spa
dcterms.bibliographicCitationVeras, H. C. T., Parachin, N. S., & Almeida, J. R. M. (2017). Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microbial Cell Factories, 16(1), 153. http://dx.doi.org/10.1186/s12934-017-0766-x PMid:28903764. » http://dx.doi.org/10.1186/s12934-017-0766-xspa
dcterms.bibliographicCitationWang, S., Li, H., Fan, X., Zhang, J., Tang, P., & Yuan, Q. (2015). Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion. Fungal Genetics and Biology, 82, 1-8. http://dx.doi.org/10.1016/j.fgb.2015.04.022 PMid:26127015. » http://dx.doi.org/10.1016/j.fgb.2015.04.022spa
dcterms.bibliographicCitationXu, L., Liu, L., Li, S., Zheng, W., Cui, Y., Liu, R., & Sun, W. (2019). Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech, 21(2), 341-347. http://dx.doi.org/10.1007/s12355-018-0650-y » http://dx.doi.org/10.1007/s12355-018-0650-yspa
dcterms.bibliographicCitationYewale, T., Panchwagh, S., Sawale, S., Jain, R., & Dhamole, P. B. (2017). Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components. 3 Biotech, 7(1), 68. http://doi:10.1007/s13205-017-0700-2. » https://doi.org/http://doi:10.1007/s13205-017-0700-2spa
dcterms.bibliographicCitationYewale, T., Panchwagh, S., Sawale, S., Jain, R., & Dhamole, P. B. (2017). Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components. 3 Biotech, 7(1), 68. http://doi:10.1007/s13205-017-0700-2. » https://doi.org/http://doi:10.1007/s13205-017-0700-2spa
dcterms.bibliographicCitationZhang, M., Puri, A. K., Wang, Z., Singh, S., & Permaul, K. (2019). A unique xylose reductase from Thermomyces lanuginosus: Effect of lignocellulosic substrates and inhibitors and applicability in lignocellulosic bioconversion. Bioresource Technology, 281, 374-381. http://dx.doi.org/10.1016/j.biortech.2019.02.102 PMid:30831517. » http://dx.doi.org/10.1016/j.biortech.2019.02.102spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1590/fst.04221
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85126587101&doi=10.1590%2ffst.04221&origin=inward&txGid=003e561f119774e92aa7a4183b3e01f0
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsCandida tropicalisspa
dc.subject.keywordsxylitolspa
dc.subject.keywordsxylose reductasespa
dc.subject.keywordsdissolved oxygenspa
dc.subject.keywordsnon-detoxified hydrolysatespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineLicenciatura en Ciencias Naturalesspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por