Mostrar el registro sencillo del ítem

dc.contributor.authorAcero, M.A.
dc.date.accessioned2022-11-15T21:15:02Z
dc.date.available2022-11-15T21:15:02Z
dc.date.issued2020-10-22
dc.date.submitted2020-06-02
dc.identifier.urihttps://hdl.handle.net/20.500.12834/959
dc.description.abstractThe sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin2 2θ13 to current reactor experiments.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceThe European Physical Journal Cspa
dc.titleLong-baseline neutrino oscillation physics potential of the DUNE experimentspa
dcterms.bibliographicCitation1. X. Qian, P. Vogel, Neutrino Mass Hierarchy. Prog. Part. Nucl. Phys. 83, 1–30 (2015). https://doi.org/10.1016/j.ppnp.2015.05. 002. arXiv:1505.01891 [hep-ex]spa
dcterms.bibliographicCitation2. M. Fukugita, T. Yanagida, Baryogenesis Without Grand Unification. Phys. Lett. B 174, 45 (1986). https://doi.org/10.1016/ 0370-2693(86)91126-3spa
dcterms.bibliographicCitation3. S. Davidson, E. Nardi, Y. Nir, Leptogenesis. Phys. Rept. 466, 105–177 (2008). https://doi.org/10.1016/j.physrep.2008.06.002. arXiv:0802.2962 [hep-ph]spa
dcterms.bibliographicCitation4. DUNE Collaboration, B. Abi et al., Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE. arXiv:2002.02967 [physics.ins-det]spa
dcterms.bibliographicCitation5. DUNE Collaboration, B. Abi et al., Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II DUNE Physics. arXiv:2002.03005 [hep-ex]spa
dcterms.bibliographicCitation6. DUNE Collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). arXiv:1601.05471 [physics.ins-det]spa
dcterms.bibliographicCitation7. DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1512.06148 [physics.ins-det]spa
dcterms.bibliographicCitation8. DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.02984 [physics.ins-det]spa
dcterms.bibliographicCitation9. I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δC P , and the mass ordering. JHEP 01, 106 (2019). https://doi.org/ 10.1007/JHEP01(2019)106. arXiv:1811.05487 [hep-ph]spa
dcterms.bibliographicCitation10. P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola, J.W.F. Valle, Status of neutrino oscillations, 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 782(2018), 633–640 (2018). https://doi.org/10.1016/j.physletb.2018.06.019. arXiv:1708.01186 [hep-ph]spa
dcterms.bibliographicCitation11. F. Capozzi, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Status and prospects of global analyses of neutrino mass-mixing parameters. J. Phys: Conf. Ser. 888(1), 012037 (2017). https://doi.org/ 10.1088/1742-6596/888/1/012037spa
dcterms.bibliographicCitation12. T2K Collaboration, K. Abe et al., Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 × 1021 Protons on Target, Phys. Rev. Lett. 121(17), (2018) 171802, https://doi.org/10.1103/PhysRevLett. 121.171802, arXiv:1807.07891 [hep-ex]spa
dcterms.bibliographicCitation13. Super-Kamiokande Collaboration, K. Abe et al., Atmospheric neutrino oscillation analysis with external constraints in SuperKamiokande I-IV, Phys. Rev. D 97(7), 072001, (2018). https:// doi.org/10.1103/PhysRevD.97.072001, arXiv:1710.09126 [hepex]spa
dcterms.bibliographicCitation14. NOvA Collaboration, M.A. Acero et al., First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. Phys. Rev. Lett. 123(15), 151803 (2019). https://doi. org/10.1103/PhysRevLett.123.151803. arXiv:1906.04907 [hepex]spa
dcterms.bibliographicCitation15. T2K Collaboration, K. Abe et al., Constraint on the matterantimatter symmetry-violating phase in neutrino oscillations. Nature 580(7803), (2020) 339–344, https://doi.org/10.1038/ s41586-020-2177-0, arXiv:1910.03887 [hep-ex]spa
dcterms.bibliographicCitation16. H. Nunokawa, S.J. Parke, J.W. Valle, CP violation and neutrino oscillations. Prog. Part. Nucl. Phys. 60, 338–402 (2008). https:// doi.org/10.1016/j.ppnp.2007.10.001. arXiv:0710.0554 [hep-ph]spa
dcterms.bibliographicCitation17. L. Wolfenstein, Neutrino oscillations in matter. Phys. Rev. D 17, 2369–2374 (1978). https://doi.org/10.1103/PhysRevD.17.2369spa
dcterms.bibliographicCitation18. S. Mikheev, A.Y. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 42, 913–917 (1985)spa
dcterms.bibliographicCitation19. NOvA Collaboration, D. S. Ayres et al., The NOvA technical design report. (2007)spa
dcterms.bibliographicCitation20. T2K Collaboration, K. Abe et al., The T2K Experiment, Nucl. Instrum. Meth. A 659 106–135 (2011). https://doi.org/10.1016/j. nima.2011.06.067, arXiv:1106.1238 [physics.ins-detspa
dcterms.bibliographicCitation21. Hyper-Kamiokande Collaboration, K. Abe et al., HyperKamiokande Design Report. arXiv:1805.04163 [physics.ins-det]spa
dcterms.bibliographicCitation22. MINERvA Collaboration, L. Aliaga et al., Neutrino Flux Predictions for the NuMI Beam, Phys. Rev. D 94(9), 092005 (2016), arXiv:1607.00704 [hep-ex]. https://doi.org/10. 1103/PhysRevD.94.092005, https://doi.org/10.1103/PhysRevD. 95.039903, [Addendum: Phys. Rev. D95, no.3, 039903 (2017)]spa
dcterms.bibliographicCitation23. GEANT4 Collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A 506, 250–303. (2003) https://doi.org/10.1016/S0168-9002(03)01368-8spa
dcterms.bibliographicCitation24. EMPHATIC Collaboration, T. Akaishi et al., EMPHATIC: A proposed experiment to measure hadron scattering and production cross sections for improved neutrino flux predictions. arXiv:1912.08841 [hep-ex]spa
dcterms.bibliographicCitation25. T. Vladisavljevic, Constraining the T2K Neutrino Flux Prediction with 2009 NA61/SHINE Replica-Target Data, in Proceedings, Prospects in Neutrino Physics (NuPhys2017): London, UK, December 20-22, 2017, pp. 189–193. (2018). https://doi.org/10. 5281/zenodo.1300546, arXiv:1804.00272 [physics.ins-det]spa
dcterms.bibliographicCitation26. DUNE Collaboration, L. Fields, A Flux Spectrometer for LBNF/DUNE, Talk presented at the APS Division of Particles and Fields Meeting (DPF 2017), July 31–August 4 (2017)spa
dcterms.bibliographicCitation27. C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator. Nucl. Instrum. Meth. A 614, 87–104 (2010). https://doi. org/10.1016/j.nima.2009.12.009. arXiv:0905.2517 [hep-ph]spa
dcterms.bibliographicCitation28. C. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, T. Golan, R. Hatcher, G. Perdue, J. Yarba, The GENIE neutrino Monte Carlo generator: physics and user manual. arXiv:1510.05494 [hep-ph]spa
dcterms.bibliographicCitation29. P. Stowell et al., NUISANCE: a neutrino cross-section generator tuning and comparison framework. JINST 12(01), P01016 (2017). https://doi.org/10.1088/1748-0221/12/01/P01016. arXiv:1612.07393 [hep-ex]spa
dcterms.bibliographicCitation30. A. Bodek, J. L. Ritchie, Fermi-motion effects in deep-inelastic lepton scattering from nuclear targets. Phys. Rev. D 23, 1070– 1091 (1981) . https://doi.org/10.1103/PhysRevD.23.1070. http:// link.aps.org/doi/10.1103/PhysRevD.23.1070spa
dcterms.bibliographicCitation31. C. Wilkinson et al., Testing charged current quasi-elastic and multinucleon interaction models in the NEUT neutrino interaction generator with published datasets from the MiniBooNE and MINERvA experiments. Phys. Rev. D 93(7), 072010 (2016). https:// doi.org/10.1103/PhysRevD.93.072010. arXiv:1601.05592 [hepex]spa
dcterms.bibliographicCitation32. O. Benhar, A. Fabrocini, S. Fantoni, I. Sick, Spectral function of finite nuclei and scattering of GeV electrons. Nucl. Phys. A 579, 493–517 (1994). https://doi.org/10.1016/0375-9474(94)90920-2spa
dcterms.bibliographicCitation33. J. Nieves, J.E. Amaro, M. Valverde, Inclusive quasi-elastic neutrino reactions. Phys. Rev. C 70, 055503 (2004). arXiv:nucl-th/0408005 [nucl-th]. https://doi.org/10.1103/PhysRevC.70.055503, https://doi.org/10.1103/PhysRevC.72. 019902, [Erratum: Phys. Rev. C72, 019902(2005)spa
dcterms.bibliographicCitation34. K. Gallmeister, U. Mosel, J. Weil, Neutrino-induced reactions on nuclei. Phys. Rev. C 94(3), 035502 (2016). https://doi.org/10. 1103/PhysRevC.94.035502. arXiv:1605.09391 [nucl-th]spa
dcterms.bibliographicCitation35. V. Pandey, N. Jachowicz, T. Van Cuyck, J. Ryckebusch, M. Martini, Low-energy excitations and quasielastic contribution to electron-nucleus and neutrino-nucleus scattering in the continuum random-phase approximation. Phys. Rev. C92(2), 024606 (2015). https://doi.org/10.1103/PhysRevC.92.024606. arXiv:1412.4624 [nucl-th]spa
dcterms.bibliographicCitation36. J.E. Sobczyk, Intercomparison of lepton-nucleus scattering models in the quasielastic region. Phys. Rev. C 96(4), 045501 (2017). https://doi.org/10.1103/PhysRevC.96.045501. arXiv:1706.06739 [nucl-th]spa
dcterms.bibliographicCitation37. J. Nieves, I. Ruiz Simo, M .J. Vicente Vacas, Phys. Rev. C. Inclusive charged–current neutrino–nucleus reactions 83, 045501 (2011). https://doi.org/10.1103/PhysRevC.83.045501. arXiv:1102.2777 [hep-ph]spa
dcterms.bibliographicCitation38. R. Gran, J. Nieves, F. Sanchez, M .J. Vicente Vacas, Phys. Rev. D. Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV 88(11), 113007 (2013). https://doi.org/10.1103/PhysRevD. 88.113007. arXiv:1307.8105 [hep-ph]spa
dcterms.bibliographicCitation39. M. Valverde, J.E. Amaro, J. Nieves, Theoretical uncertainties on quasielastic charged-current neutrino-nucleus cross sections. Phys. Lett. B 638, 325–332 (2006). https://doi.org/10.1016/j. physletb.2006.05.053. arXiv:hep-ph/0604042 [hep-ph]spa
dcterms.bibliographicCitation40. A.S. Meyer, M. Betancourt, R. Gran, R.J. Hill, Deuterium target data for precision neutrino-nucleus cross sections. Phys. Rev. D 93(11), 113015 (2016). https://doi.org/10.1103/PhysRevD.93. 113015. arXiv:1603.03048 [hep-ph]spa
dcterms.bibliographicCitation41. R. Bradford, A. Bodek, H. Budd, J. Arrington, A new parameterization of the nucleon elastic form factors. Nucl. Phys. B Proc. Suppl. 159, 127–132 (2006). https://doi.org/10. 1016/j.nuclphysbps.2006.08.028, http://www.sciencedirect.com/ science/article/pii/S0920563206005184spa
dcterms.bibliographicCitation42. J. Schwehr, D. Cherdack, R. Gran, GENIE implementation of IFIC Valencia model for QE-like 2p2h neutrino-nucleus cross section. arXiv:1601.02038 [hep-ph]spa
dcterms.bibliographicCitation43. MINERvA Collaboration, P. A. Rodrigues et al., Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer. Phys. Rev. Lett. 116, 071802 (2016). https://doi.org/10.1103/PhysRevLett.116. 071802. arXiv:1511.05944 [hep-ex]spa
dcterms.bibliographicCitation44. NOvA Collaboration, M. A. Acero et al., New constraints on oscillation parameters from νe appearance and νμ disappearance in the NOvA experiment. Phys. Rev. D 98, 032012 (2018). https:// doi.org/10.1103/PhysRevD.98.032012. arXiv:1806.00096 [hepex]spa
dcterms.bibliographicCitation45. C. Llewellyn Smith, Neutrino reactions at accelerator energies. Phys. Rept. 3, 261–379 (1972). https://doi.org/10.1016/ 0370-1573(72)90010-5spa
dcterms.bibliographicCitation46. C. Colle, O. Hen, W. Cosyn, I. Korover, E. Piasetzky, J. Ryckebusch, L.B. Weinstein, Extracting the mass dependence and quantum numbers of short-range correlated pairs from A(e, e p) and A(e, e pp)scattering. Phys. Rev. C 92(2), 024604 (2015), https:// doi.org/10.1103/PhysRevC.92.024604. arXiv:1503.06050 [nuclth]spa
dcterms.bibliographicCitation47. D. Rein, L.M. Sehgal, Neutrino excitation of baryon resonances and single pion production. Ann. Phys. 133, 79–153 (1981). https://doi.org/10.1016/0003-4916(81)90242-6spa
dcterms.bibliographicCitation48. Particle Data Group Collaboration, M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98(3), 030001 (2018). https:// doi.org/10.1103/PhysRevD.98.030001spa
dcterms.bibliographicCitation49. C. Wilkinson, P. Rodrigues, S. Cartwright, L. Thompson, K. McFarland, Reanalysis of bubble chamber measurements of muon-neutrino induced single pion production. Phys. Rev. D 90(11), 112017 (2014). https://doi.org/10.1103/PhysRevD.90. 112017. arXiv:1411.4482 [hep-ex]spa
dcterms.bibliographicCitation50. P. Rodrigues, C. Wilkinson, K. McFarland, Constraining the GENIE model of neutrino-induced single pion production using reanalyzed bubble chamber data. Eur. Phys. J. C 76(8), 474 (2016). https://doi.org/10.1140/epjc/s10052-016-4314-3. arXiv:1601.01888 [hep-ex]spa
dcterms.bibliographicCitation51. M. Kabirnezhad, Single pion production in neutrino-nucleon interactions, Phys. Rev. D 97, 013002 (2018). https://doi.org/10. 1103/PhysRevD.97.013002spa
dcterms.bibliographicCitation52. A. Bodek, U. Yang, Higher twist, xi(omega) scaling, and effective LO PDFs for lepton scattering in the few GeV region. J. Phys. G 29, 1899–1906 (2003). https://doi.org/10.1088/0954-3899/29/8/ 369. arXiv:hep-ex/0210024spa
dcterms.bibliographicCitation53. M. Glück, E. Reya, A. Vogt, Dynamical parton distributions revisited. Eur. Phys. J. C 5, 461–470 (1998). https://doi.org/10.1007/ s100520050289. arXiv:hep-ph/9806404spa
dcterms.bibliographicCitation54. T. Yang, C. Andreopoulos, H. Gallagher, K. Hoffmann, P. Kehayias, A hadronization model for few-GeV neutrino interactions. Eur. Phys. J. C 63, 1–10 (2009). https://doi.org/10.1140/ epjc/s10052-009-1094-z. arXiv:0904.4043 [hep-ph]spa
dcterms.bibliographicCitation55. Z. Koba, H.B. Nielsen, P. Olesen, Scaling of multiplicity distributions in high-energy hadron collisions. Nucl. Phys. B 40, 317–334 (1972). https://doi.org/10.1016/0550-3213(72)90551-2spa
dcterms.bibliographicCitation56. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). https://doi.org/10.1088/ 1126-6708/2006/05/026. arXiv:hep-ph/0603175 [hep-phspa
dcterms.bibliographicCitation57. M. Sanchez, Nova results and prospects, in XXVIII International Conference on Neutrino Physics and Astrophysics (Neutrino 2018). Zenodo, June, (2018). https://doi.org/10.5281/zenodo. 1286758, https://zenodo.org/record/1286758spa
dcterms.bibliographicCitation58. S. Dytman, A. Meyer, Final state interactions in GENIE. AIP Conf. Proc. 1405, 213–218 (2011). https://doi.org/10.1063/1. 3661588spa
dcterms.bibliographicCitation59. S. Dytman, GENIE final state interactions. AIP Conf. Proc. 1680, 020005 (2015). https://doi.org/10.1063/1.4931864spa
dcterms.bibliographicCitation60. S. Dytman, Final state interactions in neutrino-nucleus experiments. Acta Phys. Polon. B 40, 2445–2460 (2009spa
dcterms.bibliographicCitation61. E.S. Pinzon Guerra et al., Using world charged π±−nucleus scattering data to constrain an intranuclear cascade model. Phys. Rev. D 99(5), 052007 (2019). https://doi.org/10.1103/PhysRevD.99. 052007. arXiv:1812.06912 [hep-ex]spa
dcterms.bibliographicCitation62. M. Day, K.S. McFarland, Differences in quasi-elastic crosssections of muon and electron neutrinos. Phys. Rev. D 86, 053003 (2012). https://doi.org/10.1103/PhysRevD.86.053003. arXiv:1206.6745 [hep-phspa
dcterms.bibliographicCitation63. nuPRISM Collaboration, S. Bhadra et al., Letter of intent to construct a nuPRISM detector in the J-PARC neutrino beamline. arXiv:1412.3086 [physics.ins-det]spa
dcterms.bibliographicCitation64. C.M. Marshall, K.S. McFarland, C. Wilkinson, Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment. Phys. Rev. D 101(3), 032002 (2020). https://doi.org/ 10.1103/PhysRevD.101.032002. arXiv:1910.10996 [hep-ex]spa
dcterms.bibliographicCitation65. P.Z. Quintas et al., A Measurement of ΛM S from νμ - Fe Nonsinglet Structure Functions at the Fermilab Tevatron. Phys. Rev. Lett. 71, 1307–1310 (1993). https://doi.org/10.1103/PhysRevLett.71. 1307spa
dcterms.bibliographicCitation66. CCFR/NuTeV Collaboration, U.-K. Yang et al., Measurements of F2 and x Fν 3 − x Fν¯ 3 from CCFR νμ−Fe and ν¯μ−Fe data in a physics model independent way, Phys. Rev. Lett. 86, 2742–2745, (2001). https://doi.org/10.1103/PhysRevLett.86. 2742. arXiv:hep-ex/0009041 [hep-ex]spa
dcterms.bibliographicCitation67. NuTeV Collaboration, M. Tzanov et al., Precise measurement of neutrino and anti-neutrino differential cross sections. Phys Rev. D 74, 012008 (2006). https://doi.org/10.1103/PhysRevD.74. 012008, arXiv:hep-ex/0509010 [hep-ex]spa
dcterms.bibliographicCitation68. MINOS Collaboration, P. Adamson et al., Neutrino and antineutrino inclusive charged-current cross section measurements with the MINOS near detector. Phys. Rev. D 81, 072002 (2010). https://doi.org/10.1103/PhysRevD.81.072002. arXiv:0910.2201 [hep-ex]spa
dcterms.bibliographicCitation69. MINERvA Collaboration, J. Devan et al., “Measurements of the inclusive neutrino and antineutrino charged current cross sections in MINERvA using the low-ν flux method. Phys. Rev. D 94(11), 112007 (2016). https://doi.org/10.1103/PhysRevD.94. 112007. arXiv:1610.04746 [hep-ex]spa
dcterms.bibliographicCitation70. MINERvA Collaboration, L. Ren et al., Measurement of the antineutrino to neutrino charged-current interaction cross section ratio in MINERvA. Phys. Rev. D 95(7), 072009 (2017). arXiv:1701.04857 [hep-ex]. https://doi.org/10.1103/ PhysRevD.97.019902. https://doi.org/10.1103/PhysRevD.95. 072009 [Addendum: Phys. Rev. D97, no.1, 019902(2018)]spa
dcterms.bibliographicCitation71. MicroBooNE Collaboration, P. Abratenko et al., Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering. JINST 12(10), P10010 (2017). https://doi.org/10.1088/1748-0221/12/ 10/P10010. arXiv:1703.06187 [physics.ins-det]spa
dcterms.bibliographicCitation72. ArgonCube Collaboration, C. Amsler et al., ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors, Tech. Rep. CERN-SPSC-2015- 009. SPSC-I-243, CERN, Geneva (2015). https://cds.cern.ch/ record/1993255spa
dcterms.bibliographicCitation73. D.A. Dwyer et al., LArPix: demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers. JINST 13(10), P10007 (2018). https://doi.org/10.1088/ 1748-0221/13/10/P10007. arXiv:1808.02969 [physics.ins-det]spa
dcterms.bibliographicCitation74. M. Auger, Y. Chen, A. Ereditato, D. Goeldi, I. Kreslo, D. Lorca, M. Luethi, T. Mettler, J.R. Sinclair, M.S. Weber, ArCLight-a compact dielectric large-area photon detector. Instruments 2(1), 3 (2018). https://doi.org/10.3390/instruments2010003. arXiv:1711.11409 [physics.ins-det]spa
dcterms.bibliographicCitation75. L. Emberger, F. Simon, A highly granular calorimeter concept for long baseline near detectors. J. Phys: Conf. Ser. 1162(1), 012033 (2019). https://doi.org/10.1088/1742-6596/ 1162/1/012033. arXiv:1810.03677 [physics.ins-det]spa
dcterms.bibliographicCitation76. DUNE Collaboration, B. Abi et al., The DUNE far detector interim design report volume 1: physics, technology and strategies. arXiv:1807.10334 [physics.ins-det]spa
dcterms.bibliographicCitation77. DUNE Collaboration, B. Abi et al., The DUNE far detector interim design report, Volume 2: single-phase module. arXiv:1807.10327 [physics.ins-det]spa
dcterms.bibliographicCitation78. DUNE Collaboration, B. Abi et al., The DUNE far detector interim design report, Volume 3: dual-phase module. arXiv:1807.10340 [physics.ins-det]spa
dcterms.bibliographicCitation79. DUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, Volume IV far detector single-phase technology. arXiv:2002.03010 [physics.ins-det]spa
dcterms.bibliographicCitation80. J.S. Marshall, M.A. Thomson, The Pandora software development kit for pattern recognition. Eur. Phys. J. C 75(9), 439 (2015). https://doi.org/10.1140/epjc/s10052-015-3659-3. arXiv:1506.05348 [physics.data-an]spa
dcterms.bibliographicCitation81. MicroBooNE Collaboration, R. Acciarri et al., The Pandora multialgorithm approach to automated pattern recognition of cosmicray muon and neutrino events in the MicroBooNE detector, Eur. Phys. J. C 78(1), 82 (2018). https://doi.org/10.1140/epjc/ s10052-017-5481-6, arXiv:1708.03135 [hep-ex]spa
dcterms.bibliographicCitation82. DUNE Collaboration, B. Abi et al., Neutrino interaction classification with a convolutional neural network in the DUNE far detector. arXiv:2006.15052 [physics.ins-det]spa
dcterms.bibliographicCitation83. I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz, “Nufit4.0,” 2018. http://www.nu-fit.org/spa
dcterms.bibliographicCitation84. B. Roe, Matter density versus distance for the neutrino beam from Fermilab to Lead, South Dakota, and comparison of oscillations with variable and constant density. Phys. Rev. D 95(11), 113004 (2017). https://doi.org/10.1103/PhysRevD.95. 113004. arXiv:1707.02322 [hep-ex]spa
dcterms.bibliographicCitation85. MicroBooNE Collaboration, C. Adams et al., A method to determine the electric field of liquid argon time projection chambers using a uv laser system and its application in microboone. arXiv:1910.01430 [physics.ins-det]spa
dcterms.bibliographicCitation86. CAPTAIN Collaboration, H. Berns et al., The CAPTAIN detector and physics program. arXiv:1309.1740 [physics.ins-det]spa
dcterms.bibliographicCitation87. CAPTAIN Collaboration, B. Bhandari et al., First measurement of the total neutron cross section on argon between 100 and 800 MeV. arXiv:1903.05276 [hep-ex]spa
dcterms.bibliographicCitation88. ArgoNeuT Collaboration, R. Acciarri et al., Demonstration of MeV-scale physics in liquid argon time projection chambers using ArgoNeuT. Phys. Rev. D 99(1), 012002 (2019). https://doi.org/10. 1103/PhysRevD.99.012002arXiv:1810.06502 [hep-ex]spa
dcterms.bibliographicCitation89. MINERvA Collaboration, M. Elkins et al., Neutron measurements from anti-neutrino hydrocarbon reactions. arXiv:1901.04892 [hep-ex]spa
dcterms.bibliographicCitation90. MicroBooNE Collaboration, C. Adams et al., First Measurement of νμ Charged-Current π0 Production on Argon with a LArTPC, arXiv:1811.02700 [hep-ex]spa
dcterms.bibliographicCitation91. DUNE Collaboration, T. Alion et al., Experiment simulation configurations used in DUNE CDR, arXiv:1606.09550 [physics.insdet]spa
dcterms.bibliographicCitation92. M. Bass, Neutrino oscillation parameter sensitivity in future longbaseline experiments. PhD thesis, Colorado State U., (2014). https://doi.org/10.2172/1172561spa
dcterms.bibliographicCitation93. NOvA Collaboration, ed., NOvA-ART, ch. CAFAna overview. Redmine, (2019). https://cdcvs.fnal.gov/redmine/projects/ novaart/wiki/CAFAna_overviewspa
dcterms.bibliographicCitation94. F. James, MINUIT function minimization and error analysis: reference manual Version 94.1. CERN-D-506, CERN-D506, (1994)spa
dcterms.bibliographicCitation95. Double Chooz Collaboration Collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector, JHEP10 086, (2014), arXiv:1406.7763 [hep-ex]. https://doi.org/10.1007/JHEP02(2015)074. https://doi. org/10.1007/JHEP10(2014)086 [Erratum: JHEP02,074(2015)]spa
dcterms.bibliographicCitation96. Daya Bay Collaboration, D. Adey, et al., Measurement of electron antineutrino oscillation with, days of operation at Daya Bay. Phys. Rev. Lett. 121(2018), 241805 (1958). arXiv:1809.02261 [hep-ex]spa
dcterms.bibliographicCitation97. RENO Collaboration, G. Bak et al., Measurement of reactor antineutrino oscillation amplitude and frequency at RENO. Phys. Rev. Lett. 121, 201801 (2018). arXiv:1806.00248 [hep-ex]spa
dcterms.bibliographicCitation98. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). arXiv:1007.1727 [physics.data-an]. https://doi.org/ 10.1140/epjc/s10052-011-1554-0, https://doi.org/10.1140/epjc/ s10052-013-2501-z, [Erratum: Eur. Phys. J. C73, 2501(2013)]spa
dcterms.bibliographicCitation99. E. Ciuffoli, J. Evslin, X. Zhang, Confidence in a neutrino mass hierarchy determination. JHEP 01, 095 (2014). https://doi.org/10. 1007/JHEP01(2014)095. arXiv:1305.5150 [hep-phspa
dcterms.bibliographicCitation100. X. Qian, A. Tan, W. Wang, J. Ling, R. McKeown et al., Statistical evaluation of experimental determinations of neutrino mass hierarchy. Phys. Rev. D 86, 113011 (2012). https://doi.org/10.1103/ PhysRevD.86.113011. arXiv:1210.3651 [hep-ph]spa
dcterms.bibliographicCitation101. M. Blennow, P. Coloma, P. Huber, T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering. JHEP 1403, 028 (2014). https://doi.org/10.1007/ JHEP03(2014)028. arXiv:1311.1822 [hep-ph]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1140/epjc/s10052-020-08456-z
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por