Mostrar el registro sencillo del ítem
Long-baseline neutrino oscillation physics potential of the DUNE experiment
dc.contributor.author | Acero, M.A. | |
dc.date.accessioned | 2022-11-15T21:15:02Z | |
dc.date.available | 2022-11-15T21:15:02Z | |
dc.date.issued | 2020-10-22 | |
dc.date.submitted | 2020-06-02 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/959 | |
dc.description.abstract | The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin2 2θ13 to current reactor experiments. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | The European Physical Journal C | spa |
dc.title | Long-baseline neutrino oscillation physics potential of the DUNE experiment | spa |
dcterms.bibliographicCitation | 1. X. Qian, P. Vogel, Neutrino Mass Hierarchy. Prog. Part. Nucl. Phys. 83, 1–30 (2015). https://doi.org/10.1016/j.ppnp.2015.05. 002. arXiv:1505.01891 [hep-ex] | spa |
dcterms.bibliographicCitation | 2. M. Fukugita, T. Yanagida, Baryogenesis Without Grand Unification. Phys. Lett. B 174, 45 (1986). https://doi.org/10.1016/ 0370-2693(86)91126-3 | spa |
dcterms.bibliographicCitation | 3. S. Davidson, E. Nardi, Y. Nir, Leptogenesis. Phys. Rept. 466, 105–177 (2008). https://doi.org/10.1016/j.physrep.2008.06.002. arXiv:0802.2962 [hep-ph] | spa |
dcterms.bibliographicCitation | 4. DUNE Collaboration, B. Abi et al., Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE. arXiv:2002.02967 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 5. DUNE Collaboration, B. Abi et al., Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II DUNE Physics. arXiv:2002.03005 [hep-ex] | spa |
dcterms.bibliographicCitation | 6. DUNE Collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). arXiv:1601.05471 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 7. DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1512.06148 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 8. DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.02984 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 9. I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δC P , and the mass ordering. JHEP 01, 106 (2019). https://doi.org/ 10.1007/JHEP01(2019)106. arXiv:1811.05487 [hep-ph] | spa |
dcterms.bibliographicCitation | 10. P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola, J.W.F. Valle, Status of neutrino oscillations, 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 782(2018), 633–640 (2018). https://doi.org/10.1016/j.physletb.2018.06.019. arXiv:1708.01186 [hep-ph] | spa |
dcterms.bibliographicCitation | 11. F. Capozzi, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Status and prospects of global analyses of neutrino mass-mixing parameters. J. Phys: Conf. Ser. 888(1), 012037 (2017). https://doi.org/ 10.1088/1742-6596/888/1/012037 | spa |
dcterms.bibliographicCitation | 12. T2K Collaboration, K. Abe et al., Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 × 1021 Protons on Target, Phys. Rev. Lett. 121(17), (2018) 171802, https://doi.org/10.1103/PhysRevLett. 121.171802, arXiv:1807.07891 [hep-ex] | spa |
dcterms.bibliographicCitation | 13. Super-Kamiokande Collaboration, K. Abe et al., Atmospheric neutrino oscillation analysis with external constraints in SuperKamiokande I-IV, Phys. Rev. D 97(7), 072001, (2018). https:// doi.org/10.1103/PhysRevD.97.072001, arXiv:1710.09126 [hepex] | spa |
dcterms.bibliographicCitation | 14. NOvA Collaboration, M.A. Acero et al., First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. Phys. Rev. Lett. 123(15), 151803 (2019). https://doi. org/10.1103/PhysRevLett.123.151803. arXiv:1906.04907 [hepex] | spa |
dcterms.bibliographicCitation | 15. T2K Collaboration, K. Abe et al., Constraint on the matterantimatter symmetry-violating phase in neutrino oscillations. Nature 580(7803), (2020) 339–344, https://doi.org/10.1038/ s41586-020-2177-0, arXiv:1910.03887 [hep-ex] | spa |
dcterms.bibliographicCitation | 16. H. Nunokawa, S.J. Parke, J.W. Valle, CP violation and neutrino oscillations. Prog. Part. Nucl. Phys. 60, 338–402 (2008). https:// doi.org/10.1016/j.ppnp.2007.10.001. arXiv:0710.0554 [hep-ph] | spa |
dcterms.bibliographicCitation | 17. L. Wolfenstein, Neutrino oscillations in matter. Phys. Rev. D 17, 2369–2374 (1978). https://doi.org/10.1103/PhysRevD.17.2369 | spa |
dcterms.bibliographicCitation | 18. S. Mikheev, A.Y. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 42, 913–917 (1985) | spa |
dcterms.bibliographicCitation | 19. NOvA Collaboration, D. S. Ayres et al., The NOvA technical design report. (2007) | spa |
dcterms.bibliographicCitation | 20. T2K Collaboration, K. Abe et al., The T2K Experiment, Nucl. Instrum. Meth. A 659 106–135 (2011). https://doi.org/10.1016/j. nima.2011.06.067, arXiv:1106.1238 [physics.ins-det | spa |
dcterms.bibliographicCitation | 21. Hyper-Kamiokande Collaboration, K. Abe et al., HyperKamiokande Design Report. arXiv:1805.04163 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 22. MINERvA Collaboration, L. Aliaga et al., Neutrino Flux Predictions for the NuMI Beam, Phys. Rev. D 94(9), 092005 (2016), arXiv:1607.00704 [hep-ex]. https://doi.org/10. 1103/PhysRevD.94.092005, https://doi.org/10.1103/PhysRevD. 95.039903, [Addendum: Phys. Rev. D95, no.3, 039903 (2017)] | spa |
dcterms.bibliographicCitation | 23. GEANT4 Collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A 506, 250–303. (2003) https://doi.org/10.1016/S0168-9002(03)01368-8 | spa |
dcterms.bibliographicCitation | 24. EMPHATIC Collaboration, T. Akaishi et al., EMPHATIC: A proposed experiment to measure hadron scattering and production cross sections for improved neutrino flux predictions. arXiv:1912.08841 [hep-ex] | spa |
dcterms.bibliographicCitation | 25. T. Vladisavljevic, Constraining the T2K Neutrino Flux Prediction with 2009 NA61/SHINE Replica-Target Data, in Proceedings, Prospects in Neutrino Physics (NuPhys2017): London, UK, December 20-22, 2017, pp. 189–193. (2018). https://doi.org/10. 5281/zenodo.1300546, arXiv:1804.00272 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 26. DUNE Collaboration, L. Fields, A Flux Spectrometer for LBNF/DUNE, Talk presented at the APS Division of Particles and Fields Meeting (DPF 2017), July 31–August 4 (2017) | spa |
dcterms.bibliographicCitation | 27. C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator. Nucl. Instrum. Meth. A 614, 87–104 (2010). https://doi. org/10.1016/j.nima.2009.12.009. arXiv:0905.2517 [hep-ph] | spa |
dcterms.bibliographicCitation | 28. C. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, T. Golan, R. Hatcher, G. Perdue, J. Yarba, The GENIE neutrino Monte Carlo generator: physics and user manual. arXiv:1510.05494 [hep-ph] | spa |
dcterms.bibliographicCitation | 29. P. Stowell et al., NUISANCE: a neutrino cross-section generator tuning and comparison framework. JINST 12(01), P01016 (2017). https://doi.org/10.1088/1748-0221/12/01/P01016. arXiv:1612.07393 [hep-ex] | spa |
dcterms.bibliographicCitation | 30. A. Bodek, J. L. Ritchie, Fermi-motion effects in deep-inelastic lepton scattering from nuclear targets. Phys. Rev. D 23, 1070– 1091 (1981) . https://doi.org/10.1103/PhysRevD.23.1070. http:// link.aps.org/doi/10.1103/PhysRevD.23.1070 | spa |
dcterms.bibliographicCitation | 31. C. Wilkinson et al., Testing charged current quasi-elastic and multinucleon interaction models in the NEUT neutrino interaction generator with published datasets from the MiniBooNE and MINERvA experiments. Phys. Rev. D 93(7), 072010 (2016). https:// doi.org/10.1103/PhysRevD.93.072010. arXiv:1601.05592 [hepex] | spa |
dcterms.bibliographicCitation | 32. O. Benhar, A. Fabrocini, S. Fantoni, I. Sick, Spectral function of finite nuclei and scattering of GeV electrons. Nucl. Phys. A 579, 493–517 (1994). https://doi.org/10.1016/0375-9474(94)90920-2 | spa |
dcterms.bibliographicCitation | 33. J. Nieves, J.E. Amaro, M. Valverde, Inclusive quasi-elastic neutrino reactions. Phys. Rev. C 70, 055503 (2004). arXiv:nucl-th/0408005 [nucl-th]. https://doi.org/10.1103/PhysRevC.70.055503, https://doi.org/10.1103/PhysRevC.72. 019902, [Erratum: Phys. Rev. C72, 019902(2005) | spa |
dcterms.bibliographicCitation | 34. K. Gallmeister, U. Mosel, J. Weil, Neutrino-induced reactions on nuclei. Phys. Rev. C 94(3), 035502 (2016). https://doi.org/10. 1103/PhysRevC.94.035502. arXiv:1605.09391 [nucl-th] | spa |
dcterms.bibliographicCitation | 35. V. Pandey, N. Jachowicz, T. Van Cuyck, J. Ryckebusch, M. Martini, Low-energy excitations and quasielastic contribution to electron-nucleus and neutrino-nucleus scattering in the continuum random-phase approximation. Phys. Rev. C92(2), 024606 (2015). https://doi.org/10.1103/PhysRevC.92.024606. arXiv:1412.4624 [nucl-th] | spa |
dcterms.bibliographicCitation | 36. J.E. Sobczyk, Intercomparison of lepton-nucleus scattering models in the quasielastic region. Phys. Rev. C 96(4), 045501 (2017). https://doi.org/10.1103/PhysRevC.96.045501. arXiv:1706.06739 [nucl-th] | spa |
dcterms.bibliographicCitation | 37. J. Nieves, I. Ruiz Simo, M .J. Vicente Vacas, Phys. Rev. C. Inclusive charged–current neutrino–nucleus reactions 83, 045501 (2011). https://doi.org/10.1103/PhysRevC.83.045501. arXiv:1102.2777 [hep-ph] | spa |
dcterms.bibliographicCitation | 38. R. Gran, J. Nieves, F. Sanchez, M .J. Vicente Vacas, Phys. Rev. D. Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV 88(11), 113007 (2013). https://doi.org/10.1103/PhysRevD. 88.113007. arXiv:1307.8105 [hep-ph] | spa |
dcterms.bibliographicCitation | 39. M. Valverde, J.E. Amaro, J. Nieves, Theoretical uncertainties on quasielastic charged-current neutrino-nucleus cross sections. Phys. Lett. B 638, 325–332 (2006). https://doi.org/10.1016/j. physletb.2006.05.053. arXiv:hep-ph/0604042 [hep-ph] | spa |
dcterms.bibliographicCitation | 40. A.S. Meyer, M. Betancourt, R. Gran, R.J. Hill, Deuterium target data for precision neutrino-nucleus cross sections. Phys. Rev. D 93(11), 113015 (2016). https://doi.org/10.1103/PhysRevD.93. 113015. arXiv:1603.03048 [hep-ph] | spa |
dcterms.bibliographicCitation | 41. R. Bradford, A. Bodek, H. Budd, J. Arrington, A new parameterization of the nucleon elastic form factors. Nucl. Phys. B Proc. Suppl. 159, 127–132 (2006). https://doi.org/10. 1016/j.nuclphysbps.2006.08.028, http://www.sciencedirect.com/ science/article/pii/S0920563206005184 | spa |
dcterms.bibliographicCitation | 42. J. Schwehr, D. Cherdack, R. Gran, GENIE implementation of IFIC Valencia model for QE-like 2p2h neutrino-nucleus cross section. arXiv:1601.02038 [hep-ph] | spa |
dcterms.bibliographicCitation | 43. MINERvA Collaboration, P. A. Rodrigues et al., Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer. Phys. Rev. Lett. 116, 071802 (2016). https://doi.org/10.1103/PhysRevLett.116. 071802. arXiv:1511.05944 [hep-ex] | spa |
dcterms.bibliographicCitation | 44. NOvA Collaboration, M. A. Acero et al., New constraints on oscillation parameters from νe appearance and νμ disappearance in the NOvA experiment. Phys. Rev. D 98, 032012 (2018). https:// doi.org/10.1103/PhysRevD.98.032012. arXiv:1806.00096 [hepex] | spa |
dcterms.bibliographicCitation | 45. C. Llewellyn Smith, Neutrino reactions at accelerator energies. Phys. Rept. 3, 261–379 (1972). https://doi.org/10.1016/ 0370-1573(72)90010-5 | spa |
dcterms.bibliographicCitation | 46. C. Colle, O. Hen, W. Cosyn, I. Korover, E. Piasetzky, J. Ryckebusch, L.B. Weinstein, Extracting the mass dependence and quantum numbers of short-range correlated pairs from A(e, e p) and A(e, e pp)scattering. Phys. Rev. C 92(2), 024604 (2015), https:// doi.org/10.1103/PhysRevC.92.024604. arXiv:1503.06050 [nuclth] | spa |
dcterms.bibliographicCitation | 47. D. Rein, L.M. Sehgal, Neutrino excitation of baryon resonances and single pion production. Ann. Phys. 133, 79–153 (1981). https://doi.org/10.1016/0003-4916(81)90242-6 | spa |
dcterms.bibliographicCitation | 48. Particle Data Group Collaboration, M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98(3), 030001 (2018). https:// doi.org/10.1103/PhysRevD.98.030001 | spa |
dcterms.bibliographicCitation | 49. C. Wilkinson, P. Rodrigues, S. Cartwright, L. Thompson, K. McFarland, Reanalysis of bubble chamber measurements of muon-neutrino induced single pion production. Phys. Rev. D 90(11), 112017 (2014). https://doi.org/10.1103/PhysRevD.90. 112017. arXiv:1411.4482 [hep-ex] | spa |
dcterms.bibliographicCitation | 50. P. Rodrigues, C. Wilkinson, K. McFarland, Constraining the GENIE model of neutrino-induced single pion production using reanalyzed bubble chamber data. Eur. Phys. J. C 76(8), 474 (2016). https://doi.org/10.1140/epjc/s10052-016-4314-3. arXiv:1601.01888 [hep-ex] | spa |
dcterms.bibliographicCitation | 51. M. Kabirnezhad, Single pion production in neutrino-nucleon interactions, Phys. Rev. D 97, 013002 (2018). https://doi.org/10. 1103/PhysRevD.97.013002 | spa |
dcterms.bibliographicCitation | 52. A. Bodek, U. Yang, Higher twist, xi(omega) scaling, and effective LO PDFs for lepton scattering in the few GeV region. J. Phys. G 29, 1899–1906 (2003). https://doi.org/10.1088/0954-3899/29/8/ 369. arXiv:hep-ex/0210024 | spa |
dcterms.bibliographicCitation | 53. M. Glück, E. Reya, A. Vogt, Dynamical parton distributions revisited. Eur. Phys. J. C 5, 461–470 (1998). https://doi.org/10.1007/ s100520050289. arXiv:hep-ph/9806404 | spa |
dcterms.bibliographicCitation | 54. T. Yang, C. Andreopoulos, H. Gallagher, K. Hoffmann, P. Kehayias, A hadronization model for few-GeV neutrino interactions. Eur. Phys. J. C 63, 1–10 (2009). https://doi.org/10.1140/ epjc/s10052-009-1094-z. arXiv:0904.4043 [hep-ph] | spa |
dcterms.bibliographicCitation | 55. Z. Koba, H.B. Nielsen, P. Olesen, Scaling of multiplicity distributions in high-energy hadron collisions. Nucl. Phys. B 40, 317–334 (1972). https://doi.org/10.1016/0550-3213(72)90551-2 | spa |
dcterms.bibliographicCitation | 56. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). https://doi.org/10.1088/ 1126-6708/2006/05/026. arXiv:hep-ph/0603175 [hep-ph | spa |
dcterms.bibliographicCitation | 57. M. Sanchez, Nova results and prospects, in XXVIII International Conference on Neutrino Physics and Astrophysics (Neutrino 2018). Zenodo, June, (2018). https://doi.org/10.5281/zenodo. 1286758, https://zenodo.org/record/1286758 | spa |
dcterms.bibliographicCitation | 58. S. Dytman, A. Meyer, Final state interactions in GENIE. AIP Conf. Proc. 1405, 213–218 (2011). https://doi.org/10.1063/1. 3661588 | spa |
dcterms.bibliographicCitation | 59. S. Dytman, GENIE final state interactions. AIP Conf. Proc. 1680, 020005 (2015). https://doi.org/10.1063/1.4931864 | spa |
dcterms.bibliographicCitation | 60. S. Dytman, Final state interactions in neutrino-nucleus experiments. Acta Phys. Polon. B 40, 2445–2460 (2009 | spa |
dcterms.bibliographicCitation | 61. E.S. Pinzon Guerra et al., Using world charged π±−nucleus scattering data to constrain an intranuclear cascade model. Phys. Rev. D 99(5), 052007 (2019). https://doi.org/10.1103/PhysRevD.99. 052007. arXiv:1812.06912 [hep-ex] | spa |
dcterms.bibliographicCitation | 62. M. Day, K.S. McFarland, Differences in quasi-elastic crosssections of muon and electron neutrinos. Phys. Rev. D 86, 053003 (2012). https://doi.org/10.1103/PhysRevD.86.053003. arXiv:1206.6745 [hep-ph | spa |
dcterms.bibliographicCitation | 63. nuPRISM Collaboration, S. Bhadra et al., Letter of intent to construct a nuPRISM detector in the J-PARC neutrino beamline. arXiv:1412.3086 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 64. C.M. Marshall, K.S. McFarland, C. Wilkinson, Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment. Phys. Rev. D 101(3), 032002 (2020). https://doi.org/ 10.1103/PhysRevD.101.032002. arXiv:1910.10996 [hep-ex] | spa |
dcterms.bibliographicCitation | 65. P.Z. Quintas et al., A Measurement of ΛM S from νμ - Fe Nonsinglet Structure Functions at the Fermilab Tevatron. Phys. Rev. Lett. 71, 1307–1310 (1993). https://doi.org/10.1103/PhysRevLett.71. 1307 | spa |
dcterms.bibliographicCitation | 66. CCFR/NuTeV Collaboration, U.-K. Yang et al., Measurements of F2 and x Fν 3 − x Fν¯ 3 from CCFR νμ−Fe and ν¯μ−Fe data in a physics model independent way, Phys. Rev. Lett. 86, 2742–2745, (2001). https://doi.org/10.1103/PhysRevLett.86. 2742. arXiv:hep-ex/0009041 [hep-ex] | spa |
dcterms.bibliographicCitation | 67. NuTeV Collaboration, M. Tzanov et al., Precise measurement of neutrino and anti-neutrino differential cross sections. Phys Rev. D 74, 012008 (2006). https://doi.org/10.1103/PhysRevD.74. 012008, arXiv:hep-ex/0509010 [hep-ex] | spa |
dcterms.bibliographicCitation | 68. MINOS Collaboration, P. Adamson et al., Neutrino and antineutrino inclusive charged-current cross section measurements with the MINOS near detector. Phys. Rev. D 81, 072002 (2010). https://doi.org/10.1103/PhysRevD.81.072002. arXiv:0910.2201 [hep-ex] | spa |
dcterms.bibliographicCitation | 69. MINERvA Collaboration, J. Devan et al., “Measurements of the inclusive neutrino and antineutrino charged current cross sections in MINERvA using the low-ν flux method. Phys. Rev. D 94(11), 112007 (2016). https://doi.org/10.1103/PhysRevD.94. 112007. arXiv:1610.04746 [hep-ex] | spa |
dcterms.bibliographicCitation | 70. MINERvA Collaboration, L. Ren et al., Measurement of the antineutrino to neutrino charged-current interaction cross section ratio in MINERvA. Phys. Rev. D 95(7), 072009 (2017). arXiv:1701.04857 [hep-ex]. https://doi.org/10.1103/ PhysRevD.97.019902. https://doi.org/10.1103/PhysRevD.95. 072009 [Addendum: Phys. Rev. D97, no.1, 019902(2018)] | spa |
dcterms.bibliographicCitation | 71. MicroBooNE Collaboration, P. Abratenko et al., Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering. JINST 12(10), P10010 (2017). https://doi.org/10.1088/1748-0221/12/ 10/P10010. arXiv:1703.06187 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 72. ArgonCube Collaboration, C. Amsler et al., ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors, Tech. Rep. CERN-SPSC-2015- 009. SPSC-I-243, CERN, Geneva (2015). https://cds.cern.ch/ record/1993255 | spa |
dcterms.bibliographicCitation | 73. D.A. Dwyer et al., LArPix: demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers. JINST 13(10), P10007 (2018). https://doi.org/10.1088/ 1748-0221/13/10/P10007. arXiv:1808.02969 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 74. M. Auger, Y. Chen, A. Ereditato, D. Goeldi, I. Kreslo, D. Lorca, M. Luethi, T. Mettler, J.R. Sinclair, M.S. Weber, ArCLight-a compact dielectric large-area photon detector. Instruments 2(1), 3 (2018). https://doi.org/10.3390/instruments2010003. arXiv:1711.11409 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 75. L. Emberger, F. Simon, A highly granular calorimeter concept for long baseline near detectors. J. Phys: Conf. Ser. 1162(1), 012033 (2019). https://doi.org/10.1088/1742-6596/ 1162/1/012033. arXiv:1810.03677 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 76. DUNE Collaboration, B. Abi et al., The DUNE far detector interim design report volume 1: physics, technology and strategies. arXiv:1807.10334 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 77. DUNE Collaboration, B. Abi et al., The DUNE far detector interim design report, Volume 2: single-phase module. arXiv:1807.10327 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 78. DUNE Collaboration, B. Abi et al., The DUNE far detector interim design report, Volume 3: dual-phase module. arXiv:1807.10340 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 79. DUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, Volume IV far detector single-phase technology. arXiv:2002.03010 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 80. J.S. Marshall, M.A. Thomson, The Pandora software development kit for pattern recognition. Eur. Phys. J. C 75(9), 439 (2015). https://doi.org/10.1140/epjc/s10052-015-3659-3. arXiv:1506.05348 [physics.data-an] | spa |
dcterms.bibliographicCitation | 81. MicroBooNE Collaboration, R. Acciarri et al., The Pandora multialgorithm approach to automated pattern recognition of cosmicray muon and neutrino events in the MicroBooNE detector, Eur. Phys. J. C 78(1), 82 (2018). https://doi.org/10.1140/epjc/ s10052-017-5481-6, arXiv:1708.03135 [hep-ex] | spa |
dcterms.bibliographicCitation | 82. DUNE Collaboration, B. Abi et al., Neutrino interaction classification with a convolutional neural network in the DUNE far detector. arXiv:2006.15052 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 83. I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz, “Nufit4.0,” 2018. http://www.nu-fit.org/ | spa |
dcterms.bibliographicCitation | 84. B. Roe, Matter density versus distance for the neutrino beam from Fermilab to Lead, South Dakota, and comparison of oscillations with variable and constant density. Phys. Rev. D 95(11), 113004 (2017). https://doi.org/10.1103/PhysRevD.95. 113004. arXiv:1707.02322 [hep-ex] | spa |
dcterms.bibliographicCitation | 85. MicroBooNE Collaboration, C. Adams et al., A method to determine the electric field of liquid argon time projection chambers using a uv laser system and its application in microboone. arXiv:1910.01430 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 86. CAPTAIN Collaboration, H. Berns et al., The CAPTAIN detector and physics program. arXiv:1309.1740 [physics.ins-det] | spa |
dcterms.bibliographicCitation | 87. CAPTAIN Collaboration, B. Bhandari et al., First measurement of the total neutron cross section on argon between 100 and 800 MeV. arXiv:1903.05276 [hep-ex] | spa |
dcterms.bibliographicCitation | 88. ArgoNeuT Collaboration, R. Acciarri et al., Demonstration of MeV-scale physics in liquid argon time projection chambers using ArgoNeuT. Phys. Rev. D 99(1), 012002 (2019). https://doi.org/10. 1103/PhysRevD.99.012002arXiv:1810.06502 [hep-ex] | spa |
dcterms.bibliographicCitation | 89. MINERvA Collaboration, M. Elkins et al., Neutron measurements from anti-neutrino hydrocarbon reactions. arXiv:1901.04892 [hep-ex] | spa |
dcterms.bibliographicCitation | 90. MicroBooNE Collaboration, C. Adams et al., First Measurement of νμ Charged-Current π0 Production on Argon with a LArTPC, arXiv:1811.02700 [hep-ex] | spa |
dcterms.bibliographicCitation | 91. DUNE Collaboration, T. Alion et al., Experiment simulation configurations used in DUNE CDR, arXiv:1606.09550 [physics.insdet] | spa |
dcterms.bibliographicCitation | 92. M. Bass, Neutrino oscillation parameter sensitivity in future longbaseline experiments. PhD thesis, Colorado State U., (2014). https://doi.org/10.2172/1172561 | spa |
dcterms.bibliographicCitation | 93. NOvA Collaboration, ed., NOvA-ART, ch. CAFAna overview. Redmine, (2019). https://cdcvs.fnal.gov/redmine/projects/ novaart/wiki/CAFAna_overview | spa |
dcterms.bibliographicCitation | 94. F. James, MINUIT function minimization and error analysis: reference manual Version 94.1. CERN-D-506, CERN-D506, (1994) | spa |
dcterms.bibliographicCitation | 95. Double Chooz Collaboration Collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector, JHEP10 086, (2014), arXiv:1406.7763 [hep-ex]. https://doi.org/10.1007/JHEP02(2015)074. https://doi. org/10.1007/JHEP10(2014)086 [Erratum: JHEP02,074(2015)] | spa |
dcterms.bibliographicCitation | 96. Daya Bay Collaboration, D. Adey, et al., Measurement of electron antineutrino oscillation with, days of operation at Daya Bay. Phys. Rev. Lett. 121(2018), 241805 (1958). arXiv:1809.02261 [hep-ex] | spa |
dcterms.bibliographicCitation | 97. RENO Collaboration, G. Bak et al., Measurement of reactor antineutrino oscillation amplitude and frequency at RENO. Phys. Rev. Lett. 121, 201801 (2018). arXiv:1806.00248 [hep-ex] | spa |
dcterms.bibliographicCitation | 98. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). arXiv:1007.1727 [physics.data-an]. https://doi.org/ 10.1140/epjc/s10052-011-1554-0, https://doi.org/10.1140/epjc/ s10052-013-2501-z, [Erratum: Eur. Phys. J. C73, 2501(2013)] | spa |
dcterms.bibliographicCitation | 99. E. Ciuffoli, J. Evslin, X. Zhang, Confidence in a neutrino mass hierarchy determination. JHEP 01, 095 (2014). https://doi.org/10. 1007/JHEP01(2014)095. arXiv:1305.5150 [hep-ph | spa |
dcterms.bibliographicCitation | 100. X. Qian, A. Tan, W. Wang, J. Ling, R. McKeown et al., Statistical evaluation of experimental determinations of neutrino mass hierarchy. Phys. Rev. D 86, 113011 (2012). https://doi.org/10.1103/ PhysRevD.86.113011. arXiv:1210.3651 [hep-ph] | spa |
dcterms.bibliographicCitation | 101. M. Blennow, P. Coloma, P. Huber, T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering. JHEP 1403, 028 (2014). https://doi.org/10.1007/ JHEP03(2014)028. arXiv:1311.1822 [hep-ph] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1140/epjc/s10052-020-08456-z | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |