Mostrar el registro sencillo del ítem

dc.contributor.authorMolina-Hernandez, Junior Bernardo
dc.contributor.otherLaika, Jessica
dc.contributor.otherPeralta-Ruiz, Yeimmy
dc.contributor.otherKumar Palivala, Vinay
dc.contributor.otherTappi, Silvia
dc.contributor.otherCappelli, Filippo
dc.contributor.otherRicci, Antonella
dc.contributor.otherNeri, Lilia
dc.contributor.otherChaves-López, Clemencia
dc.date.accessioned2022-11-15T21:14:54Z
dc.date.available2022-11-15T21:14:54Z
dc.date.issued2022-01-13
dc.date.submitted2021-12-02
dc.identifier.citationMolina-Hernandez, J. B., Laika, J., Peralta-Ruiz, Y., Palivala, V. K., Tappi, S., Cappelli, F., Ricci, A., Neri, L., & Chaves-López, C. (2022). Influence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.). Foods (Basel, Switzerland), 11(2), 210. https://doi.org/10.3390/foods11020210spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/958
dc.description.abstractThis research aimed to evaluate the impact of atmospheric cold plasma (ACP) treatment on the fungal spores naturally present in sundried tomatoes, as well as their influence on the physicochemical properties and antioxidant activity. ACP was performed with a Surface Dielectric Barrier Discharge (SDBD), applying 6 kV at 23 kHz and exposure times up to 30 min. The results showed a significant reduction of mesophilic aerobic bacteria population and of filamentous fungi after the longer ACP exposure. In particular, the effect of the treatment was assessed on Aspergillus rugulovalvus (as sensible strain) and Aspergillus niger (as resistant strain). The germination of the spores was observed to be reliant on the species, with nearly 88% and 32% of non-germinated spores for A. rugulovalvus and A. niger, respectively. Fluorescence probes revealed that ACP affects spore viability promoting strong damage to the wall and cellular membrane. For the first time, the sporicidal effect of ACP against A. rugulovalvus is reported. Physicochemical parameters of sundried tomatoes such as pH and water activity (aw) were not affected by the ACP treatment; on the contrary, the antioxidant activity was not affected while the lycopene content was significantly increased with the increase in ACP exposure time (p 0.05) probably due to increased extractabilityspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceFoodsspa
dc.titleInfluence of Atmospheric Cold Plasma Exposure on Naturally Present Fungal Spores and Physicochemical Characteristics of Sundried Tomatoes (Solanum lycopersicum L.)spa
dcterms.bibliographicCitationFAOSTAT. News Archive 2011. Available online: https://www.fao.org/news/archive/news-by-date/2011/en/ (accessed on 1 October 2021).spa
dcterms.bibliographicCitationSharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control 2009, 50, 205–221. [CrossRef]spa
dcterms.bibliographicCitationHegazy, E.M. Mycotoxin and fungal contamination of fresh and dried tomato. Annu. Res. Rev. Biol. 2017, 17, 1–9. [CrossRef]spa
dcterms.bibliographicCitationFAOSTAT. Food and Agriculture Statistics. Available online: https://www.fao.org/food-agriculture-statistics/en/ (accessed on 15 October 2021).spa
dcterms.bibliographicCitationFAOSTAT. The State of Food and Agriculture. Available online: https://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 15 October 2021).spa
dcterms.bibliographicCitationSanzani, S.M.; Gallone, T.; Garganese, F.; Caruso, A.G.; Amenduni, M.; Ippolito, A. Contamination of fresh and dried tomato by Alternaria toxins in southern Italy. Food Addit. Contam. Part A 2019, 36, 789–799. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationDoymaz, I. Air-drying characteristics of tomatoes. J. Food Eng. 2007, 78, 1291–1297. [CrossRef]spa
dcterms.bibliographicCitationKakde, U.B.; Kakde, H.U. Incidence of post-harvest disease and airborne fungal spores in a vegetable market. Acta Bot. Croat. 2012, 71, 147–157. [CrossRef]spa
dcterms.bibliographicCitationSephton-Clark, P.C.S.; Muñoz, J.F.; Ballou, E.R.; Cuomo, C.A.; Voelz, K. Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar. mSphere 2018, 3, e00403-18. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationDwivedy, A.K.; Prakash, B.; Chanotiya, C.S.; Bisht, D.; Dubey, N.K. Chemically characterized Mentha cardiaca L. essential oil as plant based preservative in view of efficacy against biodeteriorating fungi of dry fruits, aflatoxin secretion, lipid peroxidation and safety profile assessment. Food Chem. Toxicol. 2017, 106, 175–184. [CrossRef]spa
dcterms.bibliographicCitationNdagijimana, M.; Chaves-López, C.; Corsetti, A.; Tofalo, R.; Sergi, M.; Paparella, A.; Guerzoni, M.E.; Suzzi, G. Growth and metabolites production by Penicillium brevicompactum in yoghurt. Int. J. Food Microbiol. 2008, 127, 276–283. [CrossRef]spa
dcterms.bibliographicCitationCappato, L.P.; Ferreira, M.V.S.; Guimaraes, J.T.; Portela, J.B.; Costa, A.L.R.; Freitas, M.Q.; Cunha, R.L.; Oliveira, C.A.F.; Mercali, G.D.; Marzack, L.D.F.; et al. Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends Food Sci. Technol. 2017, 62, 104–112. [CrossRef]spa
dcterms.bibliographicCitationAmaral, G.V.; Silva, E.K.; Cavalcanti, R.N.; Cappato, L.P.; Guimaraes, J.T.; Alvarenga, V.O.; Esmerino, E.A.; Portela, J.B.; Sant’ Ana, A.S.; Freitas, M.Q.; et al. Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends Food Sci. Technol. 2017, 64, 94–101. [CrossRef]spa
dcterms.bibliographicCitationAlvarez, I.; Niemira, B.A.; Fan, X.; Sommers, C.H. Inactivation of Salmonella serovars in liquid whole egg by heat following irradiation treatments. J. Food Prot. 2006, 69, 2066–2074. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationOlanya, O.M.; Niemira, B.A.; Phillips, J.G. Effects of gamma irradiation on the survival of Pseudomonas fluorescens inoculated on romaine lettuce and baby spinach. LWT 2015, 62, 55–61. [CrossRef]spa
dcterms.bibliographicCitationBerrios-Rodriguez, A.; Olanya, O.M.; Annous, B.A.; Cassidy, J.M.; Orellana, L.; Niemira, B.A. Survival of Salmonella Typhimurium on soybean sprouts following treatments with gaseous chlorine dioxide and biocontrol Pseudomonas bacteria. Food Sci. Biotechnol. 2017, 26, 513–520. [CrossRef]spa
dcterms.bibliographicCitationMisra, N.N.; Pankaj, S.K.; Segat, A.; Ishikawa, K. Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci. Technol. 2016, 55, 39–47. [CrossRef]spa
dcterms.bibliographicCitationMisra, N.N.; Jo, C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 2017, 64, 74–86. [CrossRef]spa
dcterms.bibliographicCitationPankaj, S.K.; Keener, K.M. Cold plasma: Background, applications and current trends. Curr. Opin. Food Sci. 2017, 16, 49–52. [CrossRef]spa
dcterms.bibliographicCitationMunitz, M.S.; Garrido, C.E.; Gonzalez, H.H.L.; Resnik, S.L.; Salas, P.M.; Montti, M.I.T. Mycoflora and Potential Mycotoxin Production of Freshly Harvested Blueberry in Concordia, Entre Ríos Province, Argentina. Int. J. Fruit Sci. 2013, 13, 312–325. [CrossRef]spa
dcterms.bibliographicCitationDelgado-Ospina, J.; Molina-Hernandez, J.B.; Maggio, F.; Fernández-Daza, F.; Sciarra, P.; Paparella, A.; Chaves-López, C. Advances in understanding the enzymatic potential and production of ochratoxin A of moulds isolated from cocoa fermented beans. Food Microbiol. 2022, in press.spa
dcterms.bibliographicCitationGlass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [CrossRef]spa
dcterms.bibliographicCitationMakhlouf, J.; Carvajal-Campos, A.; Querin, A.; Tadrist, S.; Puel, O.; Lorber, S.; Oswald, I.P.; Hamze, M.; Bailly, J.D.; Bailly, S. Morphologic, molecular and metabolic characterization of Aspergillus section Flavi in spices marketed in Lebanon. Sci. Rep. 2019, 9, 5263. [CrossRef]spa
dcterms.bibliographicCitationAli, A.; Muhammad, M.T.M.; Sijam, K.; Siddiqui, Y. Potential of chitosan coating in delaying the postharvest anthracnose (Colletotrichum gloeosporioides Penz.) of Eksotika II papaya. Int. J. Food Sci. Technol. 2010, 45, 2134–2140. [CrossRef]spa
dcterms.bibliographicCitationMolina-Hernandez, J.B.; Aceto, A.; Bucciarelli, T.; Paludi, D.; Valbonetti, L.; Zilli, K.; Scotti, L.; Chaves-López, C. The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death. Sci. Rep. 2021, 11, 21557. [CrossRef]spa
dcterms.bibliographicCitationHorwitz, W. Official Methods of Analysis International, Agricultural Chemicals, Contaminants, Drugs, 15th ed.; AOAC 925.10; AOAC: Rockville, MD, USA, 1990.spa
dcterms.bibliographicCitationSalder, G.; Davis, J.; Dezman, D. Rapid Extraction of Lycopene and -Carotene from Reconstituted Tomato Paste and Pink Grapefruit Homogenates. J. Food Sci. 1990, 55, 1460–1461. [CrossRef]spa
dcterms.bibliographicCitationSouza, A.L.R.; Hidalgo-Chávez, D.W.; Pontes, S.M.; Gomes, F.S.; Cabral, L.M.C.; Tonon, R.V. Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT—Food Sci. Technol. 2018, 91, 286–292. [CrossRef]spa
dcterms.bibliographicCitationSingleton, V.L.; Rossi, J.A.J. Colorimetry to total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vinic. 1965, 16, 144–158.spa
dcterms.bibliographicCitationRe, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Min Yang, A.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]spa
dcterms.bibliographicCitationShimizu, T.; Sakiyama, Y.; Graves, D.B.; Zimmermann, J.L.; Morfill, G.E. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure. New J. Phys. 2012, 14, 103028. [CrossRef]spa
dcterms.bibliographicCitationPavlovich, M.J.; Clarck, D.S.; Graves, D.B. Quantification of air plasma chemistry for surface disinfection. Plasma Sources Sci. Technol. 2014, 23, 065036. [CrossRef]spa
dcterms.bibliographicCitationEliasson, B.; Hirth, M.; Kogelschatz1, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 1987, 20, 1421. [CrossRef]spa
dcterms.bibliographicCitationKogelschatz, U.; Eliasson, B.; Hirth, M. Ozone generation from oxygen and air: Discharge physics and reactions mechanisms. Ozone Sci. Eng. 1987, 10, 367–368. [CrossRef]spa
dcterms.bibliographicCitationFinn, S.; Condell, O.; McClure, P.; Amézquita, A.; Fanning, S. Mechanisms of survival, responses, and sources of salmonella in low-moisture environments. Front. Microbiol. 2013, 4, 331. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationPuligundla, P.; Mok, C. Inactivation of spores by nonthermal plasmas. World J. Microbiol. Biotechnol. 2018, 34, 143. [CrossRef]spa
dcterms.bibliographicCitationDobrynin, D.; Fridman, G.; Mukhin, Y.V.; Wynosky-Dolfi, M.A.; Rieger, J.; Rest, R.F.; Gutsol, A.F.; Fridman, A. Cold plasma inactivation of Bacillus cereus and Bacillus anthracis (anthrax) spores. IEEE Trans. Plasma Sci. 2010, 38, 1878–1884. [CrossRef]spa
dcterms.bibliographicCitationHertwig, C.; Reineke, K.; Rauh, C.; Schlüter, O. Factors involved in Bacillus spore’s resistance to cold atmospheric pressure plasma. Innov. Food Sci. Emerg. Technol. 2017, 43, 173–181. [CrossRef]spa
dcterms.bibliographicCitationYoung, S.B.; Setlow, P. Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone. J. Appl. Microbiol. 2004, 96, 1133–1142. [CrossRef]spa
dcterms.bibliographicCitationPatil, S.; Moiseev, T.; Misra, N.N.; Cullen, P.J.; Mosnier, J.P.; Keener, K.M.; Bourke, P. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. J. Hosp. Infect. 2014, 88, 162–169. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationGavahian, M.; Peng, H.J.; Chu, Y.H. Efficacy of cold plasma in producing Salmonella-free duck eggs: Effects on physical characteristics, lipid oxidation, and fatty acid profile. J. Food Sci. Technol. 2019, 56, 5271–5281. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLacombe, A.; Niemira, B.A.; Gurtler, J.B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol. 2015, 46, 479–484. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationUlbin-Figlewicz, N.; Jarmoluk, A. Effect of low-pressure plasma treatment on the color and oxidative stability of raw pork during refrigerated storage. Food Sci. Technol. Int. 2016, 22, 313–324. [CrossRef]spa
dcterms.bibliographicCitationZiuzina, D.; Patil, S.; Cullen, P.J.; Keener, K.M.; Bourke, P. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 2014, 42, 109–116. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationButscher, D.; Zimmermann, D.; Schuppler, M.; von Rohr, P.R. Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control 2016, 60, 636–645. [CrossRef]spa
dcterms.bibliographicCitationKim, J.E.; Lee, D.U.; Min, S.C. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 2014, 38, 128–136. [CrossRef]spa
dcterms.bibliographicCitationIseki, S.; Ohta, T.; Aomatsu, A.; Ito, M.; Kano, H.; Higashijima, Y.; Hori, M. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 2010, 96, 153704. [CrossRef]spa
dcterms.bibliographicCitationYaguchi, T.; Horie, Y.; Tanaka, R.; Matsuzawa, T.; Ito, J.; Nishimura, K. Molecular phylogenetics of multiple genes on Aspergillus section Fumigati isolated from clinical specimens in Japan. Jpn. J. Med. Mycol. 2007, 48, 37–46. [CrossRef]spa
dcterms.bibliographicCitationTrompeter, F.J.; Neff, W.J.; Franken, O.; Heise, M.; Neiger, M.; Liu, S.; Pietsch, G.J.; Saveljew, A.B. Reduction of Bacillus Subtilis and Aspergillus Niger spores using nonthermal atmospheric gas discharges. IEEE Trans. Plasma Sci. 2002, 30, 1416–1423. [CrossRef]spa
dcterms.bibliographicCitationOtt, L.C.; Appleton, H.J.; Shi, H.; Keener, K.; Mellata, M. High voltage atmospheric cold plasma treatment inactivates Aspergillus flavus spores and deoxynivalenol toxin. Food Microbiol. 2021, 95, 103669. [CrossRef]spa
dcterms.bibliographicCitationOliveira, B.R.; Marques, A.P.; Ressurreição, M.; Moreira, C.J.S.; Pereira, C.S.; Crespo, M.T.B.; Pereira, V.J. Inactivation of Aspergillus species in real water matrices using medium pressure mercury lamps. J. Photochem. Photobiol. B Biol. 2021, 221, 112242. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationMisra, N.N.; Yadav, B.; Roopesh, M.S.; Jo, C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 106–120. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationCordero, R.J.B.; Casadevall, A. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 2017, 31, 99–112. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationMontie, T.C.; Kelly-Wintenberg, K.; Roth, J.R. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci. 2000, 28, 41–50. [CrossRef]spa
dcterms.bibliographicCitationHopke, A.; Brown, A.J.P.; Hall, R.A.; Wheeler, R.T. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion. Trends Microbiol. 2018, 26, 284–295. [CrossRef]spa
dcterms.bibliographicCitationAmbrico, P.F.; Šimek, M.; Rotolo, C.; Morano, M.; Minafra, A.; Ambrico, M.; Pollastro, S.; Gerin, D.; Faretra, F.; De Miccolis Angelini, R.M. Surface Dielectric Barrier Discharge plasma: A suitable measure against fungal plant pathogens. Sci. Rep. 2020, 10, 3673. [CrossRef]spa
dcterms.bibliographicCitationBao, Y.; Reddivari, L.; Huang, J.Y. Development of cold plasma pretreatment for improving phenolics extractability from tomato pomace. Innov. Food Sci. Emerg. Technol. 2020, 65, 102445. [CrossRef]spa
dcterms.bibliographicCitationStarek, A.; Pawłat, J.; Chudzik, B.; Kwiatkowski, M.; Terebun, P.; Sagan, A.; Andrejko, D. Evaluation of selected microbial and physicochemical parameters of fresh tomato juice after cold atmospheric pressure plasma treatment during refrigerated storage. Sci. Rep. 2019, 9, 8407. [CrossRef]spa
dcterms.bibliographicCitationRamazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol. Technol. 2015, 107, 55–65. [CrossRef]spa
dcterms.bibliographicCitationTappi, S.; Ramazzina, I.; Rizzi, F.; Sacchetti, G.; Ragni, L.; Rocculi, P. Effect of plasma exposure time on the polyphenolic profile and antioxidant activity of fresh-cut apples. Appl. Sci. 2018, 8, 1939. [CrossRef]spa
dcterms.bibliographicCitationDasan, B.G.; Boyaci, I.H. Effect of Cold Atmospheric Plasma on Inactivation of Escherichia coli and Physicochemical Properties of Apple, Orange, Tomato Juices, and Sour Cherry Nectar. Food Bioprocess Technol. 2018, 11, 334–343. [CrossRef]spa
dcterms.bibliographicCitationLi, X.; Li, M.; Ji, N.; Jin, P.; Zhang, J.; Zheng, Y.; Zhang, X.; Li, F. Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. LWT 2019, 115, 108447. [CrossRef]spa
dcterms.bibliographicCitationAlothman, M.; Bhat, R.; Karim, A.A. UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov. Food Sci. Emerg. Technol. 2009, 10, 512–516. [CrossRef]spa
dcterms.bibliographicCitationOzen, E.; Singh, R.K. Atmospheric cold plasma treatment of fruit juices: A review. Trends Food Sci. Technol. 2020, 103, 144–151. [CrossRef]spa
dcterms.bibliographicCitationHoffmann, A.M.; Noga, G.; Hunsche, M. High blue light improves acclimation and photosynthetic recovery of pepper plants exposed to UV stress. Environ. Exp. Bot. 2015, 109, 254–263. [CrossRef]spa
dcterms.bibliographicCitationSarangapani, C.; O’Toole, G.; Cullen, P.J.; Bourke, P. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov. Food Sci. Emerg. Technol. 2017, 44, 235–241. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/foods11020210
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85123160775&doi=10.3390%2ffoods11020210&origin=inward&txGid=bd108d2d59bab33586f39927b5470e8e
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsatmospheric cold plasma (ACP)spa
dc.subject.keywordssporicidal activityspa
dc.subject.keywordsAspergillus nigerspa
dc.subject.keywordsAspergillus rugulovalvusspa
dc.subject.keywordslycopenespa
dc.subject.keywordsantioxidant activityspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Agroindustrialspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por