Mostrar el registro sencillo del ítem

dc.contributor.authorAcero, M.A.
dc.date.accessioned2022-11-15T21:12:39Z
dc.date.available2022-11-15T21:12:39Z
dc.date.issued2020-12-03
dc.date.submitted2020-07-30
dc.identifier.urihttps://hdl.handle.net/20.500.12834/951
dc.description.abstractThe ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2 × 6.1 × 7.0 m3 . It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP’s performance, including noise and gain measurements, calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP’s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceJournal of Instrumentationspa
dc.titleFirst results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platformspa
dcterms.bibliographicCitation[1] DUNE collaboration, Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report. Volume I: introduction to DUNE, arXiv:2002.02967.spa
dcterms.bibliographicCitation[2] ICARUS collaboration, Design, construction and tests of the ICARUS T600 detector, Nucl. Instrum. Meth. A 527 (2004) 329.spa
dcterms.bibliographicCitation[3] DUNE collaboration, The single-phase ProtoDUNE technical design report, arXiv:1706.07081spa
dcterms.bibliographicCitation[4] F. Pietropaolo, Review of liquid-argon detectors development at the CERN neutrino platform, J. Phys. Conf. Ser. 888 (2017) 012038.spa
dcterms.bibliographicCitation[5] DUNE collaboration, Deep Underground Neutrino Experiment (DUNE), far detector technical design report. Volume IV: far detector single-phase technology, arXiv:2002.03010spa
dcterms.bibliographicCitation[6] DUNE collaboration, Deep Underground Neutrino Experiment (DUNE), far detector technical design report. Volume II: DUNE physics, arXiv:2002.03005.spa
dcterms.bibliographicCitation[7] C. Anderson et al., The ArgoNeuT detector in the NuMI low-energy beam line at Fermilab, 2012 JINST 7 P10019 [arXiv:1205.6747].spa
dcterms.bibliographicCitation[8] C. Bromberg et al., Design and Operation of LongBo: a 2 m long drift liquid Argon TPC, 2015 JINST 10 P07015 [arXiv:1504.00398]spa
dcterms.bibliographicCitation[9] MicroBooNE collaboration, Design and construction of the MicroBooNE Detector, 2017 JINST 12 P02017 [arXiv:1612.05824].spa
dcterms.bibliographicCitation[10] D.L. Adams et al., Design and performance of a 35-ton liquid argon time projection chamber as a prototype for future very large detectors, 2020 JINST 15 P03035 [arXiv:1912.08739].spa
dcterms.bibliographicCitation[11] DUNE collaboration, Design, construction and operation of the ProtoDUNE-SP liquid argon TPC, in preparation.spa
dcterms.bibliographicCitation[12] D. Montanari et al., Development of membrane cryostats for large liquid argon neutrino detectors, IOP Conf. Ser. Mater. Sci. Eng. 101 (2015) 012049.spa
dcterms.bibliographicCitation[13] P. Benetti et al., Argon purification in the liquid phase, Nucl. Instrum. Meth. A 333 (1993) 567spa
dcterms.bibliographicCitation[14] M. Adamowski et al., The Liquid Argon Purity Demonstrator, 2014 JINST 9 P07005 [arXiv:1403.7236].spa
dcterms.bibliographicCitation[15] A. Bettini et al., A study of the factors affecting the electron lifetime in ultra-pure liquid argon, Nucl. Instrum. Meth. A 305 (1991) 177.spa
dcterms.bibliographicCitation[16] G.J. Michna, S.P. Gent, D. Pederson and C. Streff, CFD analysis of the fluid, heat, and impurity flows in ProtoDUNE single phase detector, DUNE-Doc-17481-v1 (2019).spa
dcterms.bibliographicCitation[17] G. De Geronimo et al., Front-end ASIC for a Liquid Argon TPC, IEEE Trans. Nucl. Sci. 58 (2011) 1376spa
dcterms.bibliographicCitation[18] D. Adams et al., The ProtoDUNE-SP LArTPC electronics production, commissioning, and performance, 2020 JINST 15 P06017 [arXiv:2002.01782]spa
dcterms.bibliographicCitation[19] F. Acerbi and S. Gundacker, Understanding and simulating SiPMs, Nucl. Instrum. Meth. A 926 (2019) 16spa
dcterms.bibliographicCitation[20] E.M. Conover, Muon-induced backgrounds in the Double Chooz neutrino oscillation experiment, Ph.D. thesis, The University of Chicago, Chicago, U.S.A. (2014spa
dcterms.bibliographicCitation[21] R. Herbst et al., Design of the SLAC RCE Platform: a general purpose ATCA based data acquisition system, in the proceedings of the 21st Symposium on Room-Temperature Semiconductor X-ray and Gamma-ray Detectors (RTSD 2014), November 8–15, Seattle, U.S.A. (2014).spa
dcterms.bibliographicCitation[22] K.V. Tsang, M. Convery, M. Graham, R. Herbst and J. Russell, The SLAC RCE platform for ProtoDUNE, EPJ Web Conf. 214 (2019) 01025.spa
dcterms.bibliographicCitation[23] J. Anderson et al., FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework, 2016 JINST 11 C12023spa
dcterms.bibliographicCitation[24] A. Borga et al., FELIX based readout of the single-phase ProtoDUNE detector, IEEE Trans. Nucl. Sci. 66 (2019) 993 [arXiv:1806.09194]spa
dcterms.bibliographicCitation[25] K. Biery, C. Green, J. Kowalkowski, M. Paterno and R. Rechenmacher, artdaq: an event-building, filtering, and processing framework, IEEE Trans. Nucl. Sci. 60 (2013) 3764.spa
dcterms.bibliographicCitation[26] N. Charitonidis and I. Efthymiopoulos, Low energy tertiary beam line design for the CERN neutrino platform project, Phys. Rev. Accel. Beams 20 (2017) 111001spa
dcterms.bibliographicCitation[27] A.C. Booth et al., Particle production, transport, and identification in the regime of 1–7 GeV/c, Phys. Rev. Accel. Beams 22 (2019) 061003.spa
dcterms.bibliographicCitation[28] I. Ortega Ruiz, Accurate profile measurement of the low intensity secondary beams in the CERN experimental areas, Ph.D. thesis, Ecole Polytechnique, Lausanne, Switzerland (2018).spa
dcterms.bibliographicCitation[29] FMC Time to Digital Converter | FMC TDC 1ns 5cha, https://ohwr.org/project/fmc-tdc/wikis/homespa
dcterms.bibliographicCitation[30] N. Charitonidis, I. Efthymiopoulos and Y. Karyotakis, Beam performance and instrumentation studies for the ProtoDUNE-DP experiment of CENF, Tech. Rep. CERN-ACC-NOTE-2016-0052. 27, CERN, Geneva (Jul, 2016)spa
dcterms.bibliographicCitation[31] N. Charitonidis, Y. Karyotakis and L. Gatignon, Estimation of the R134a gas refractive index for use as a Cherenkov radiator, using a high energy charged particle beam, Nucl. Instrum. Meth. B 410 (2017) 134.spa
dcterms.bibliographicCitation[32] D. Carey, K. Brown and F. Rothacker, Third-order TRANSPORT: a computer program for designing charged particle beam transport systems, SLAC-R-462 (1995).spa
dcterms.bibliographicCitation[33] Methodical Accelerator Design CERN, http://mad.web.cern.ch/mad/spa
dcterms.bibliographicCitation[34] P. K. Skowronski, F. Schmidt and E. Forest, Advances in MAD X using PTC, Conf. Proc. C070625 (2007) 3381spa
dcterms.bibliographicCitation[35] P. Chatzidaki, Optics optimization of tertiary particle beamlines and efficiency measurement of prototype scintillating fiber detectors, Diploma thesis, National Technical University, Athens, Greece (2018).spa
dcterms.bibliographicCitation[36] T.J. Roberts et al., G4Beamline particle tracking in matter-dominated beam lines, Conf. Proc. C0806233 (2008) WEPP120spa
dcterms.bibliographicCitation[37] T.T. Böhlen et al., The FLUKA Code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120 (2014) 211spa
dcterms.bibliographicCitation[38] A. Ferrari, P.R. Sala, A. Fasso and J. Ranft, FLUKA: a multi-particle transport code (Program version 2005), CERN-2005-010spa
dcterms.bibliographicCitation[39] MicroBooNE collaboration, Noise characterization and filtering in the MicroBooNE Liquid Argon TPC, 2017 JINST 12 P08003 [arXiv:1705.07341].spa
dcterms.bibliographicCitation[40] S. Ramo, Currents induced by electron motion, Proc. Ire. 27 (1939) 584.spa
dcterms.bibliographicCitation[41] R. Veenhof, GARFIELD, recent developments, Nucl. Instrum. Meth. A 419 (1998) 726spa
dcterms.bibliographicCitation[42] Y. Li et al., Measurement of Longitudinal Electron Diffusion in Liquid Argon, Nucl. Instrum. Meth. A 816 (2016) 160 [arXiv:1508.07059].spa
dcterms.bibliographicCitation[43] C. Zhang, Summary of liquid argon properties, http://lar.bnl.gov/properties/.spa
dcterms.bibliographicCitation[44] MicroBooNE collaboration, Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm description and quantitative evaluation with MicroBooNE simulation, 2018 JINST 13 P07006 [arXiv:1802.08709].spa
dcterms.bibliographicCitation[45] MicroBooNE collaboration, Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE, 2018 JINST 13 P07007 [arXiv:1804.02583]spa
dcterms.bibliographicCitation[46] J.S. Marshall and M.A. Thomson, The Pandora software development kit for pattern recognition, Eur. Phys. J. C 75 (2015) 439 [arXiv:1506.05348].spa
dcterms.bibliographicCitation[47] MicroBooNE collaboration, The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector, Eur. Phys. J. C 78 (2018) 82 [arXiv:1708.03135].spa
dcterms.bibliographicCitation[48] A.A. Machado and E. Segreto, ARAPUCA a new device for liquid argon scintillation light detection, 2016 JINST 11 C02004.spa
dcterms.bibliographicCitation[49] Z. Moss et al., A factor of four increase in attenuation length of dipped lightguides for liquid argon TPCs through improved coating, arXiv:1604.03103.spa
dcterms.bibliographicCitation[50] L. Bugel et al., Demonstration of a lightguide detector for liquid argon TPCs, Nucl. Instrum. Meth. A 640 (2011) 69 [arXiv:1101.3013].spa
dcterms.bibliographicCitation[51] B. Howard et al., A novel use of light guides and wavelength shifting plates for the detection of scintillation photons in large liquid argon detectors, Nucl. Instrum. Meth. A 907 (2018) 9 [arXiv:1710.11233].spa
dcterms.bibliographicCitation[52] L. Condat, A direct algorithm for 1𝐷���������������������� total variation denoising, IEEE Signal Proc. Lett. 20 (2013) 1054spa
dcterms.bibliographicCitation[53] E.D. Church, LArSoft: a software package for Liquid Argon Time Projection Drift Chambers, arXiv:1311.6774.spa
dcterms.bibliographicCitation[54] C. Zhang, Wire-cell BEE event display, https://www.phy.bnl.gov/twister/beespa
dcterms.bibliographicCitation[55] T. Doke et al., Absolute scintillation yields in liquid argon and xenon for various particles, Jap. J. Appl. Phys. 41 (2002) 1538.spa
dcterms.bibliographicCitation[56] M. Babicz et al., Experimental study of the propagation of scintillation light in Liquid Argon, Nucl. Instrum. Meth. A 936 (2019) 178.spa
dcterms.bibliographicCitation[57] M. Babicz et al., A measurement of the group velocity of scintillation light in liquid argon, 2020 JINST 15 P09009 [arXiv:2002.09346]spa
dcterms.bibliographicCitation[58] M. Mooney, The MicroBooNE experiment and the impact of space charge effects, in Meeting of the APS Division of Particles and Fields, 11, 2015 [arXiv:1511.01563].spa
dcterms.bibliographicCitation[59] MicroBooNE collaboration, Measurement of space charge effects in MicroBooNE, MICROBOONE-NOTE-1018-PUBspa
dcterms.bibliographicCitation[60] MicroBooNE collaboration, A method to determine the electric field of liquid argon time projection chambers using a UV laser system and its application in MicroBooNE, 2020 JINST 15 P07010 [arXiv:1910.01430].spa
dcterms.bibliographicCitation[61] MicroBooNE collaboration, Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons, 2020 JINST 15 P03022 [arXiv:1907.11736].spa
dcterms.bibliographicCitation[62] Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001.spa
dcterms.bibliographicCitation[63] ArgoNeuT collaboration, A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC, 2013 JINST 8 P08005 [arXiv:1306.1712]spa
dcterms.bibliographicCitation[64] Muon stopping power and range tables 10 MeV–100 TeV, http://pdg.lbl.gov/2019/AtomicNuclearProperties/adndt.pdf.spa
dcterms.bibliographicCitation[65] ArgoNeuT collaboration, First observation of low energy electron neutrinos in a Liquid Argon Time Projection Chamber, Phys. Rev. D 95 (2017) 072005 [arXiv:1610.04102]spa
dcterms.bibliographicCitation[66] LArIAT collaboration, Calorimetry for low-energy electrons using charge and light in liquid argon, Phys. Rev. D 101 (2020) 012010 [arXiv:1909.07920]spa
dcterms.bibliographicCitation[67] DUNE collaboration, First calorimetric energy reconstruction of beam events with ARAPUCA light detector in ProtoDUNE-SP, 2020 JINST 15 C03033spa
dcterms.bibliographicCitation[68] C.W. Fabjan and F. Gianotti, Calorimetry for particle physics, Rev. Mod. Phys. 75 (2003) 1243.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1088/1748-0221/15/12/P12004
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsLarge detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por