Mostrar el registro sencillo del ítem
Economic and Exergo-Advance Analysis of aWaste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low GlobalWarming Potential
dc.contributor.author | Valencia Ochoa, Guillermo | |
dc.contributor.other | Isaza-Roldan, Cesar | |
dc.contributor.other | Duarte Forero, Jorge | |
dc.date.accessioned | 2022-11-15T21:08:49Z | |
dc.date.available | 2022-11-15T21:08:49Z | |
dc.date.issued | 2020-03-12 | |
dc.date.submitted | 2020-02-03 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/942 | |
dc.description.abstract | The waste heat recovery system (WHRS) is a good alternative to provide a solution to the waste energy emanated in the exhaust gases of the internal combustion engine (ICE). Therefore, it is useful to carry out research to improve the thermal e ciency of the ICE through a WHRS based on the organic Rankine cycle (ORC), since this type of system takes advantage of the heat of the exhaust gases to generate electrical energy. The organic working fluid selection was developed according to environmental criteria, operational parameters, thermodynamic conditions of the gas engine, and investment costs. An economic analysis is presented for the systems operating with three selected working fluids: toluene, acetone, and heptane, considering the main costs involved in the design and operation of the thermal system. Furthermore, an exergo-advanced study is presented on the WHRS based on ORC integrated to the ICE, which is a Jenbacher JMS 612 GS-N of 2 MW power fueled with natural gas. This advanced exergetic analysis allowed us to know the opportunities for improvement of the equipment and the increase in the thermodynamic performance of the ICE. The results show that when using acetone as the organic working fluid, there is a greater tendency of improvement of endogenous character in Pump 2 of around 80%. When using heptane it was manifested that for the turbine there are near to 77% opportunities for improvement, and the use of toluene in the turbine gave a rate of improvement of 70%. Finally, some case studies are presented to study the e ect of condensation temperature, the pinch point temperature in the evaporator, and the pressure ratio on the direct, indirect, and fixed investment costs, where the higher investment costs were presented with the acetone, and lower costs when using the toluene as working fluid. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | MDPI AG | spa |
dc.title | Economic and Exergo-Advance Analysis of aWaste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low GlobalWarming Potential | spa |
dcterms.bibliographicCitation | 1. Endo, T.; Kawajiri, S.; Kojima, Y.; Takahashi, K.; Baba, T.; Ibaraki, S.; Takahashi, T.; Shinohara, M. Study on Maximizing Exergy in Automotive Engines. SAE Trans. 2007, 116, 347–356. | spa |
dcterms.bibliographicCitation | 2. Sylla, M.B.; Faye, A.; Giorgi, F.; Diedhiou, A.; Kunstmann, H. Projected heat stress under 1.5 C and 2 C global warming scenarios creates unprecedented discomfort for humans in West Africa. Earth’s Future 2018, 6, 1029–1044. | spa |
dcterms.bibliographicCitation | 3. Valencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21, 655. | spa |
dcterms.bibliographicCitation | 4. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700. | spa |
dcterms.bibliographicCitation | 5. Valencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermo-Economic Assessment of a Gas Microturbine-Absorption Chiller Trigeneration System under Di erent Compressor Inlet Air Temperatures. Energies 2019, 12, 4643. | spa |
dcterms.bibliographicCitation | 6. Scaccabarozzi, R.; Tavano, M.; Invernizzi, C.M.; Martelli, E. Thermodynamic Optimization of heat recovery ORCs for heavy duty Internal Combustion Engine: Pure fluids vs. zeotropic mixtures. Energy Procedia 2017, 129, 168–175. | spa |
dcterms.bibliographicCitation | 7. Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Yang, F.Y.; Yang, K.; Wang, Z.; Zhang, J.; Yang, F.B. Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine. Appl. Therm. Eng. 2014, 67, 168–178. | spa |
dcterms.bibliographicCitation | 8. Lang, J.; Schä ert, P.; Böwing, R.; Rivellini, S.; Nota, F.; Klausner, J. Development of a new generation of GE’s Jenbacher type 6 gas engines. In Heavy-Duty-, On-und O -Highway-Motoren 2016; Springer: Berlin/Heidelberg, Germany, 2017; pp. 19–36. | spa |
dcterms.bibliographicCitation | 9. Fadiran, G.; Adebusuyi, A.T.; Fadiran, D. Natural gas consumption and economic growth: Evidence from selected natural gas vehicle markets in Europe. Energy 2019, 169, 467–477. | spa |
dcterms.bibliographicCitation | 10. Feijoo, F.; Iyer, G.C.; Avraam, C.; Siddiqui, S.A.; Clarke, L.E.; Sankaranarayanan, S.; Binsted, M.T.; Patel, P.L.; Prates, N.C.; Torres-Alfaro, E. The future of natural gas infrastructure development in the United states. Appl. Energy 2018, 228, 149–166. | spa |
dcterms.bibliographicCitation | 11. Valencia, G.; Vanegas, M.; Villicana, E. Disponibilidad Geográfica y Temporal de la Energía Solar en la Costa Caribe Colombiana; Sello editorial de la Universidad del Atlántico: Barranquilla, Colombia, 2016. | spa |
dcterms.bibliographicCitation | 12. Bou Lawz Ksayer, E. Design of an ORC system operating with solar heat and producing sanitary hot water. Energy Procedia 2011, 6, 389–395. | spa |
dcterms.bibliographicCitation | 13. Kanoglu, M. Exergy analysis of a dual-level binary geothermal power plant. Geothermics 2002, 31, 709–724. | spa |
dcterms.bibliographicCitation | 14. Drescher, U.; Brüggemann, D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Appl. Therm. Eng. 2007, 27, 223–228. | spa |
dcterms.bibliographicCitation | 15. Wang, Z.; Zhou, N.; Jing, G. Performance analysis of ORC power generation system with low-temperature waste heat of aluminum reduction cell. Phys. Procedia 2012, 24, 546–553. [ | spa |
dcterms.bibliographicCitation | 16. Quoilin, S.; Declaye, S.; Tchanche, B.F.; Lemort, V. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Appl. Therm. Eng. 2011, 31, 2885–2893. | spa |
dcterms.bibliographicCitation | 17. Valencia Ochoa, G.; Cárdenas Gutierrez, J.; Duarte Forero, J. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2. | spa |
dcterms.bibliographicCitation | 18. Ramírez, R.; Gutiérrez, A.S.; Cabello Eras, J.J.; Valencia, K.; Hernández, B.; Duarte Forero, J. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 2019, 241. | spa |
dcterms.bibliographicCitation | 19. Wang, X.; Shu, G.; Tian, H.; Liu, P.; Jing, D.; Li, X. Dynamic analysis of the dual-loop Organic Rankine Cycle for waste heat recovery of a natural gas engine. Energy Convers. Manag. 2017, 148, 724–736. | spa |
dcterms.bibliographicCitation | 20. Eyerer, S.; Wieland, C.; Vandersickel, A.; Splietho , H. Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization. Energy 2016, 103, 660–671. | spa |
dcterms.bibliographicCitation | 21. To olo, A.; Lazzaretto, A.; Manente, G.; Paci, M. A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems. Appl. Energy 2014, 121, 219–232. | spa |
dcterms.bibliographicCitation | 22. Valencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine. Energies 2019, 12, 4165. | spa |
dcterms.bibliographicCitation | 23. Suárez de la Fuente, S.; Roberge, D.; Greig, A.R. Safety and CO2 emissions: Implications of using organic fluids in a ship’s waste heat recovery system. Mar. Policy 2017, 75, 191–203. | spa |
dcterms.bibliographicCitation | 24. Lai, N.A.; Wendland, M.; Fischer, J. Working fluids for high-temperature organic Rankine cycles. Energy 2011, 36, 199–211. | spa |
dcterms.bibliographicCitation | 25. Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic Analysis of Di erent ExhaustWaste-Heat Recovery Systems for Natural Gas Engine Based on ORC. Appl. Sci. 2019, 9, 4017. | spa |
dcterms.bibliographicCitation | 26. Zare, V. A comparative exergoeconomic analysis of di erent ORC configurations for binary geothermal power plants. Energy Convers. Manag. 2015, 105, 127–138. | spa |
dcterms.bibliographicCitation | 27. Bejan, A.; Tsatsaronis, G.; Moran, M.J. Thermal Design and Optimization; Wiley-Interscience: Hoboken, NJ, USA, 1995; p. 560. | spa |
dcterms.bibliographicCitation | 28. Smith, R. Chemical Process: Design and Integration; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 0470011912. | spa |
dcterms.bibliographicCitation | 29. Towler, G.; Sinnott, R. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 0080966608. | spa |
dcterms.bibliographicCitation | 30. Franchetti, B.; Pesiridis, A.; Pesmazoglou, I.; Sciubba, E.; Tocci, L. Thermodynamic and technical criteria for the optimal selection of the working fluid in a mini-ORC. In Proceedings of the ECOS 2016—The 29th International Conference on E ciency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Portorož, Slovenia, 19–23 June 2016. | spa |
dcterms.bibliographicCitation | 31. Kelly, S.; Tsatsaronis, G.; Morosuk, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts. Energy 2009, 34, 384–391. | spa |
dcterms.bibliographicCitation | 32. Yürüsoy, M.; Keçeba¸s, A. Advanced exergo-environmental analyses and assessments of a real district heating system with geothermal energy. Appl. Therm. Eng. 2017, 113, 449–459. | spa |
dcterms.bibliographicCitation | 33. Bejan, A.; Tsatsaronis, G.; Moran, M.J. Thermal Design and Optimization; JohnWiley & Sons: Hoboken, NJ, USA, 1995; ISBN 0471584673. | spa |
dcterms.bibliographicCitation | 34. Lukawski, M. Design and Optimization of Standardized Organic Rankine Cycle Power Plant for European Conditions. Ph.D. Thesis, University of Akureyri, Akureyri, Iceland, 2009. | spa |
dcterms.bibliographicCitation | 35. El-Emam, R.S.; Dincer, I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 2013, 59, 435–444. | spa |
dcterms.bibliographicCitation | 36. Calise, F.; Capuozzo, C.; Carotenuto, A.; Vanoli, L. Thermoeconomic analysis and o -design performance of an organic Rankine cycle powered by medium-temperature heat sources. Sol. Energy 2014, 103, 595–609. | spa |
dcterms.bibliographicCitation | 37. Kelly, S. Energy Systems Improvement based on Endogenous and Exogenous Exergy Destruction Ocean Thermal Energy Converters View project Use of Exergy Analysis to Improve Energy Systems View Project. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2008. | spa |
dcterms.bibliographicCitation | 38. Boyaghchi, F.A.; Molaie, H. Investigating the e ect of duct burner fuel mass flow rate on exergy destruction of a real combined cycle power plant components based on advanced exergy analysis. Energy Convers. Manag. 2015, 103, 827–835. | spa |
dcterms.bibliographicCitation | 39. Petrakopoulou, F.; Tsatsaronis, G.; Morosuk, T.; Carassai, A. Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy 2012, 41, 146–152. | spa |
dcterms.bibliographicCitation | 40. Peris, B.; Navarro-Esbrí, J.; Molés, F. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery. Appl. Therm. Eng. 2013, 61, 364–371. | spa |
dcterms.bibliographicCitation | 41. Valencia Ochoa, G.; Nuñez Alvarez, J.; Vanegas Chamorro, M. Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar—Colombia. Data Brief 2019, 27, 104753. | spa |
dcterms.bibliographicCitation | 42. Valencia, G.; Nuñez, J.; Acevedo, C. Research Evolution on Renewable Energies Resources from 2007 to 2017: A Comparative Study on Solar, Geothermal,Wind and Biomass Energy. Int. J. Energy Econ. Policy 2019, 9, 242–253. | spa |
dcterms.bibliographicCitation | 43. Peters, M.S.; Timmerhaus, K.D. Plant Design and Economics for Chemical Engineers; McGraw-Hill: New York, NY, USA, 1980; ISBN 0070495823. | spa |
dcterms.bibliographicCitation | 44. Valencia, G.; Benavides, A.; Cárdenas, Y. Economic and Environmental Multiobjective Optimization of a Wind–Solar–Fuel Cell Hybrid Energy System in the Colombian Caribbean Region. Energies 2019, 12, 2119. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/en13061317 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | economic analysis; exergo-advanced study; internal combustion engine; organic Rankine cycle; waste heat recovery | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |