Mostrar el registro sencillo del ítem

dc.contributor.authorDomınguez-Haydar, Yamileth
dc.contributor.otherVelasquez, Elena
dc.contributor.otherZangerle, Anne
dc.contributor.otherLavelle, Patrick
dc.contributor.otherGutierrez-Eisman, Silvia
dc.contributor.otherJimenez, Juan J.
dc.date.accessioned2022-11-15T21:08:31Z
dc.date.available2022-11-15T21:08:31Z
dc.date.issued2020-08-12
dc.date.submitted2020-04-08
dc.identifier.urihttps://hdl.handle.net/20.500.12834/940
dc.description.abstractIn this study the near-infrared reflectance (NIR) spectra signals (750–2,500 nm) of soil samples was compared with the NIR signals of the biogenic aggregates produced in the lab by three earthworm species, i.e., Aporrectodea rosea (Savigny 1826), Lumbricus friendi Cognetti, 1904 and Prosellodrilus pyrenaicus (Cognetti, 1904) from subalpine meadows in the Central Pyrenees. NIR spectral signatures of biogenic aggregates, root-aggregates, and non-aggregated soil were obtained together with soil carbon (C), nitrogen (N), NHþ 4 and NO 3 determinations. The concentrations of C, N and C:N ratio in the three types of soil aggregates identified were not statistically significant (ANOVA, p>0.05) although non-macroaggregated soil had slightly higher C concentrations (66.3 g kg-1 dry soil) than biogenic aggregates (earthworm- and root-aggregates, 64.9 and 63.5 g kg-1 dry soil, respectively), while concentrations of NHþ 4 and NO 3 were highest in the root-attached aggregates (3.3 and 0.31 mg kg dry soil-1). Total earthworm density and biomass in the sampled area was 137.6 ind. m-2, and 55.2 g fresh weight m-2, respectively. The biomass of aggregates attached to roots and non-macroaggregated soil was 122.3 and 134.8 g m-2, respectively, while biomass of free (particulate) organic matter and invertebrate biogenic aggregates was 62.9 and 41.7 g m-2, respectively. Multivariate analysis of NIR spectra signals of field aggregates separated root aggregates with high concentrations of NHþ 4 and NO 3 (41.5% of explained variance, axis I) from those biogenic aggregates, including root aggregates, with large concentrations of C and high C:N ratio (21.6% of total variability, axis II). Partial Least Square (PLS) regressions were used to compare NIR spectral signals of samples (casts and soil) and develop calibration equations relating these spectral data to those data obtained chemical variables in the lab. After a derivatization process, the NIR spectra of field aggregates were projected onto the PLS factorial plane of the NIR spectra from the lab incubation. The projection of the NIR spectral signals onto the PLSR models for C, N, NHþ 4 and NO 3 from casts produced and incubated in the lab allowed us to identify the species and the age of the field biogenic aggregates. Our hypothesis was to test whether field aggregates would match or be in the vicinity of the NIR signals that corresponded to a certain species and the age of the depositions produced in the lab. A NIRS biogenic background noise (BBN) is present in the soil as a result of earthworm activity. This study provides insights on how to analyse the role of these organisms in important ecological processes of soil macro-aggregation and associated organic matter dynamics by means of analyzing the BBN in the soil matrixspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourcePlos Onespa
dc.titleUnveiling the age and origin of biogenic aggregates produced by earthworm species with their NIRS fingerprint in a subalpine meadow of Central Pyreneesspa
dcterms.bibliographicCitationWardle DA, Bardgett RD, Klironomos JN, Seta¨la¨ H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304: 1629–1633. https://doi.org/10.1126/ science.1094875 PMID: 15192218spa
dcterms.bibliographicCitationLavelle P, Spain A, Blouin M, Brown GG, Decae¨ns T, Grimaldi M, et al. (2016) Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Sci 181(3/4): 91–109.spa
dcterms.bibliographicCitationJones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69: 373–386.spa
dcterms.bibliographicCitationLavelle P, Spain A (2001) Soil Ecology. Kluwers Academic Publishers, Dordrecht, The Netherlandsspa
dcterms.bibliographicCitationMeysman FJR, Middleburg JJ, Heip CHR (2006) Bioturbation: a fresh look at Darwin’s last idea. TREE 21(12): 688–695. https://doi.org/10.1016/j.tree.2006.08.002 PMID: 16901581spa
dcterms.bibliographicCitationJime´nez JJ, Lal R (2006) Mechanisms of C sequestration in soils of Latin America. Crit Rev Plant Sci 25(4): 337–365.spa
dcterms.bibliographicCitationFilser J, Faber JH, Tiunov AV, Brussaard L, Frouz J, De Deyn G, et al. (2016) Soil fauna: key to new carbon models. SOIL 2: 565–582spa
dcterms.bibliographicCitationLavelle P, Spain A, Blouin M, Brown GG, Decae¨ns T, Grimaldi M, et al. (2016) Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Science 181(3/4): 91– 109.spa
dcterms.bibliographicCitationBellon-Maurel V, McBratney A (2011) Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils–Critical review and research perspectives. Soil Biol Biochem 43: 1398–1410.spa
dcterms.bibliographicCitationBen-Dor E, Banin A (1995) Near-Infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci Soc Am J 59: 364–372.spa
dcterms.bibliographicCitationFoley W, McIlwee A, Lawler I, Aragones L, Woolnough AP, Berding N (1998) Ecological applications of near infrared spectroscopy—a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia 116: 293–305. https://doi.org/10.1007/ s004420050591 PMID: 28308060spa
dcterms.bibliographicCitationRamirez JA, Posada JM, Handa IT, Hoch G, Vohland M, Messier C, et al. (2015) Near-infrared spectroscopy (NIRS) predicts non-structural carbohydrate concentrations in different tissue types of a broad range of tree species. Methods Ecol Evol 6: 1018–1025spa
dcterms.bibliographicCitationVasques GM, Grunwald S, Sickman JO (2008) Comparison of multi-variate methods to predict soil carbon using visible/near-infrared diffuse reflectance spectroscopy. Geoderma 146(1–2): 14–25.spa
dcterms.bibliographicCitationHedde M, Lavelle P, Joffre R, Jime´nez JJ, Decae¨ns T (2005) Specific functional signature in soil macroinvertebrate biostructures. Funct Ecol 19: 785–793spa
dcterms.bibliographicCitationVelasquez E, Pelosi C, Brunet D, Grimaldi M, Martins M, Rendeiro AC, et al. (2007) This ped is my ped: Visual separation and near infrared spectra allow determination of the origins of soil macroaggregates. Pedobiologia 51: 75–87spa
dcterms.bibliographicCitationDomı´nguez Y, Castañeda C, Rodrı´guez-Ochoa R, Jime´nez JJ (2018) Assessment of soil fauna footprints at a rehabilitated coal mine using micromorphology and near infrared spectroscopy (NIRS). Geoderma 313: 135–145spa
dcterms.bibliographicCitationDecae¨ns T, Galvis JH, Ame´zquita E (2001) Properties of the structures created by ecosystem engineers on the soil surface of a Colombian savanna. CRAS Se´rie III, 324(5): 465–478.spa
dcterms.bibliographicCitationZangerle´ A, Pando A, Lavelle P (2011) Do earthworms and roots cooperate to build soil macroaggregates? A microcosm experiment. Geoderma 167–168: 303–309.spa
dcterms.bibliographicCitationZhang C, Langlest R, Vela´squez E, Pando A, Brunet D, Dai J, et al. (2009) Cast production and NIR spectral signatures of Aporrectodea caliginosa fed soil with different amounts of half-decomposed Populus nigra litter. Biol Fertil Soils 45: 839–844spa
dcterms.bibliographicCitationZangerle´ A, Hissler C, Blouin M, Lavelle P (2014) Near infrared spectroscopy (NIRS) to estimate earthworm cast age. Soil Biol Biochem 70: 47–53.spa
dcterms.bibliographicCitationCe´cillon L, Barthès BG, Gomez C, Ertlen D, Genot V, Hedde M, et al. (2009) Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). Eur J Soil Sci 60: 770–784spa
dcterms.bibliographicCitationDomı´nguez-Haydar Y, Vela´squez E, Carmona J, Lavelle P, Chaves LF, Jime´nez JJ (2019) Evaluation of reclamation success in open-pit coal mine using integrated soil physical, chemical and biological quality indicators. Ecol Ind 103: 182–193spa
dcterms.bibliographicCitation. Huerta E, Brunet D, Vela´squez E, Lavelle P (2013) Identifying earthworm’s organic matter signatures by near infrared spectroscopy in different land-use systems in Tabasco, Mexico. Appl Soil Ecol 69: 49– 55.spa
dcterms.bibliographicCitationVelasquez E, Lavelle P, Barrios E, Joffre R, Reversat F (2005) Evaluating soil quality in tropical agroecosystems of Colombia using NIRS. Soil Biol Biochem 37: 889–898.spa
dcterms.bibliographicCitationZangerle´ A, Hissler C, McKey D, Lavelle P (2016) Using near infrared spectroscopy (NIRS) to identify the contribution of earthworms to soil macroaggregation in field conditions. Appl Soil Ecol 104: 138–147.spa
dcterms.bibliographicCitationLavelle P, Spain A, Fonte S, Bedano JC, Blanchart E, Galindo V, et al. (2020) Soil aggregation, ecosystem engineers and the C cycle Acta Oecol 105: 103561.spa
dcterms.bibliographicCitationGartzia M, Pe´rez-Cabello F, Bueno CG, Alados CL (2016) Changes in mountain grassland physiognomy and physiology in response to physical and anthropogenic factors using remote sensing. Appl Geogr 66: 1–11.spa
dcterms.bibliographicCitation. Lasanta-Martı´nez T, Vicente-Serrano SM, Cuadrat-Prats JM (2005) Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: a study of the Spanish Central Pyrenees. Appl Geogr 25: 47–65spa
dcterms.bibliographicCitationAEMET. Agencia Estatal de Meteorologı´a [In Spanish]spa
dcterms.bibliographicCitation. Badı´a D, Martı´ C, Sa´nchez JR, Fillat F, Aguirre J, Go´mez D (2008) Influence of livestock soil eutrophication on floral composition in the Pyrenees mountains. J Mt Sci 5: 63–72.spa
dcterms.bibliographicCitation. Bueno CG, Jime´nez JJ (2014) Livestock grazing activities and wild boar rooting affect alpine earthworm communities in the Central Pyrenees (Spain). Appl Soil Ecol 83: 71–78.spa
dcterms.bibliographicCitationIUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.spa
dcterms.bibliographicCitationBadı´a D, Garcı´a-Gonza´lez R, Martı´ C (2002) Clasificacio´n de suelos en pastos alpinos de Aı´sa y Ordesa (Pirineo Central). Edafologia 9(1): 11–22. [in Spanish]spa
dcterms.bibliographicCitationAlvarez, J (1971) Los Oligoquetos terrı´colas de la penı´nsula ibe´rica. PhD thesis dissertation. Faculty of Sciences, UCM, Madrid [In Spanish].spa
dcterms.bibliographicCitationBouche´ MB (1972) Lombriciens de France. Ecologie et Syste´matique. INRA, Parisspa
dcterms.bibliographicCitationSims RW, Gerard BM (1999) Earthworms. FSC Publications, Londonspa
dcterms.bibliographicCitationTopoliantz S, Ponge JF, Viaux P (2000) Earthworm and enchytraeid activity under different arable farming systems, as exemplified by biogenic structures. Plant Soil 225: 39–51.spa
dcterms.bibliographicCitationCunha L, Brown GG, Stanton DWG, da Silva E, Hansel FA, Jorge G, et al. (2016) Soil animals and pedogenesis: the role of earthworms in anthropogenic soils. Soil Sci 181: 1–16.spa
dcterms.bibliographicCitationVelasquez E, Fonte SJ, Barot S, Grimaldi M, Desjardins T, Lavelle P (2012) Soil macrofauna-mediated impacts of plant species composition on soil functioning in Amazonian pastures. Appl Soil Ecol 56: 43– 50.spa
dcterms.bibliographicCitationLawler IR, Aragones L, Berding N, Marsh H, Foley WJ (2006) Near-infrared reflectance spectroscopy is a rapid, cost-effective predictor of seagrass nutrients. J Chem Ecol 32: 1353–1365. https://doi.org/10. 1007/s10886-006-9088-x PMID: 16770723spa
dcterms.bibliographicCitationGuthrie J, Walsh KB, Reid DJ, Liebenberg CJ (2005) Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development. Aust J Agr Res 56: 405–416.spa
dcterms.bibliographicCitationMaynard DG, Kalra YP (1993) Nitrate and Exchangeable Ammonium Nitrogen. In: Carter M.R., Ed., Soil Sampling and Methods of Analysis, Lewis Publishers, Boca Raton, pp. 25–38.spa
dcterms.bibliographicCitationSavitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36: 1627–1637.spa
dcterms.bibliographicCitationGuthrie JA, Walsh K (1997) Non-invasive assessment of pineapple and mango fruit quality using near infra-red spectroscopy. Aust J Exp Agr 37: 253–263.spa
dcterms.bibliographicCitationCe´cillon L, de Mello NA, De Danieli S, Brun JJ (2010) Soil macroaggregate dynamics in a mountain spatial climate gradient. Biogeochemistry 97: 31–43.spa
dcterms.bibliographicCitation. Shenk JS, Westerhaus MO, Workman J (1992) Application of NIR spectroscopy to agricultural products, in Handbook of Near Infrared Analysis, ed. by Ciurczak E, Practical Spectroscopy Series. Marcel Dekker, New York, pp. 383–431spa
dcterms.bibliographicCitationManly BFJ (1991) Randomization and Monte Carlo Methods in Biology. Chapman and Hallspa
dcterms.bibliographicCitationShenk JS, Westerhaus MO (1993) Near infrared reflectance analysis with single and multiproduct calibrations. Crop Sci 33: 582–584.spa
dcterms.bibliographicCitationKennard RW, Stone IA (1969) Computer aided design of experiments. Technometrics 11: 137–148spa
dcterms.bibliographicCitationHotelling H (1947) Multivariate Quality Control. In Eisenhart C., Hastay M. W., and Wallis W. A., eds. Techniques of Statistical Analysis. New York: McGraw-Hillspa
dcterms.bibliographicCitationR Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org/.spa
dcterms.bibliographicCitationBotinelli N, Capowiez Y, Hallaire V, Ranger J, Jouquet P (2013) Inability of Near Infrared Reflectance Spectroscopy (NIRS) to identify belowground earthworm casts in no-tillage soil. Appl Soil Ecol 70: 57–61spa
dcterms.bibliographicCitationJouquet P, Zangerle´ A, Rumpel C, Brunet D, Botinelli N, Tran Duc T (2009) Relevance and limitations of biogenic and physicogenic classification: A comparison of approaches for differentiating the origin of soil aggregates. Eur J Soil Sci 60: 1117–1125.spa
dcterms.bibliographicCitationTrigo D, Lavelle P (1993) Changes in respiration rate and some physicochemical properties of soil during gut transit through Allolobophora molleri (Lumbricidae, Oligochaeta). Biol Fertil Soils 15: 185–188.spa
dcterms.bibliographicCitationSchmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature 478: 49–56. https://doi.org/10.1038/ nature10386 PMID: 21979045spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1371/journal.pone.0237115
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por