Mostrar el registro sencillo del ítem

dc.contributor.authorRojas, Jhan Piero
dc.contributor.otherValencia Ochoa, Guillermo
dc.contributor.otherDuarte Forero, Jorge
dc.date.accessioned2022-11-15T21:02:11Z
dc.date.available2022-11-15T21:02:11Z
dc.date.issued2020-04-29
dc.date.submitted2020-03-10
dc.identifier.urihttps://hdl.handle.net/20.500.12834/926
dc.description.abstractThis article presents the modeling and simulation of a hybrid generation system, which uses solar energy generation, wind energy, and the regulation of a proton exchange membrane (PEM) cell to raise the demanded load, empowering the use of these hydride systems worldwide. This generation system was simulated for di erent locations in Puerto Bolivar (Colombia), Bremen (Germany), Beijing (China), and Texas (USA), for two demand profiles. The data used for the simulation was calculated using the mathematical solar model proposed by Beistow and Campbell for solar radiation. In contrast, for the wind resource evaluation, theWeibull probability distribution was used to calculate the most probable wind speed for each day, according to the historical data for each of the studied locations. Considering these data, the process transfer functions were used for tuning the control parameters for the hydrogen and oxygen production system. For the evaluation of the performance of these controllers, the indices of the absolute value of the error (IAE), the integral of the square of the error (ISE), the integral of the absolute value of the error for time (ITAE), and the integral of the square of the error for time (ITSE) were used. It was found that in the second load profile studied, better performance of the ITSE performance parameter was obtained, with stabilization times lower than those of the first profile.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMDPI AGspa
dc.titleComparative Performance of a Hybrid Renewable Energy Generation System with Dynamic Load Demandspa
dcterms.bibliographicCitation1. Yono , R.E.; Ochoa, G.V.; Cardenas-Escorcia, Y.; Silva-Ortega, J.I.; Meriño-Stand, L. Research trends in proton exchange membrane fuel cells during 2008–2018: A bibliometric analysis. Heliyon 2019, 5, e01724.spa
dcterms.bibliographicCitation2. Wolfram, C.; Shelef, O.; Gertler, P.Howwill energy demand develop in the developing world? J. Econ. Perspect. 2012, 26, 119–138.spa
dcterms.bibliographicCitation3. Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic analysis of di erent exhaust waste-heat recovery systems for natural gas engine based on ORC. Appl. Sci. 2019, 9, 4017.spa
dcterms.bibliographicCitation4. Valencia, G.; Peñaloza, C.; Forero, J. Thermoeconomic optimization with PSO algorithm of waste heat recovery systems based on organic rankine cycle system for a natural gas engine. Energies 2019, 12, 4165.spa
dcterms.bibliographicCitation5. Alibaba, M.; Pourdarbani, R.; Hasan, M.; Manesh, K.; Valencia, G.; Duarte, J. Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon 2020, 6, e03758.spa
dcterms.bibliographicCitation6. Goldemberg, J. The case for renewable energies. In Renewable Energy; Routledge: Thames, UK, 2012; pp. 31–42.spa
dcterms.bibliographicCitation7. Duarte, J.; Duarte Forero, N.; Hernandez, B.; Vanegas, M.; Stand, R. Experimental study of partial fuel substitution with hydroxy and energy recovery in low displacement compression ignition engines. In ASME International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2019; Volume 59452, p. V008T09A021.spa
dcterms.bibliographicCitation8. Hache, E.; Palle, A. Renewable energy source integration into power networks, research trends and policy implications: A bibliometric and research actors survey analysis. Energy Policy 2019, 124, 23–35.spa
dcterms.bibliographicCitation9. De Paulo, A.F.; Porto, G.S. Solar energy technologies and open innovation: A study based on bibliometric and social network analysis. Energy Policy 2017, 108, 228–238.spa
dcterms.bibliographicCitation10. Koo, Y.; Oh, M.; Kim, S.-M.; Park, H.-D. Estimation and mapping of solar irradiance for korea by using COMS MI satellite images and an artificial neural network model. Energies 2020, 13, 301.spa
dcterms.bibliographicCitation11. Alghamdi, A.S. Potential for rooftop-mounted pv power generation to meet domestic electrical demand in saudi arabia: Case Study of a villa in jeddah. Energies 2019, 12, 4411.spa
dcterms.bibliographicCitation12. Mao, G.; Liu, X.; Du, H.; Zuo, J.; Wang, L. Way forward for alternative energy research: A bibliometric analysis during 1994–2013. Renew. Sustain. Energy Rev. 2015, 48, 276–286.spa
dcterms.bibliographicCitation13. Yue, C.-D.; Chiu, Y.-S.; Tu, C.-C.; Lin, T.-H. Evaluation of an o shore wind farm by using data from the weather station, floating LiDAR, mast, and MERRA. Energies 2020, 13, 185.spa
dcterms.bibliographicCitation14. Perea-Moreno, A.-J.; Alcalá, G.; Hernandez-Escobedo, Q. Seasonal wind energy characterization in the gulf of mexico. Energies 2019, 13, 93.spa
dcterms.bibliographicCitation15. KC, A.; Whale, J.; Urmee, T. Urban wind conditions and small wind turbines in the built environment: A review. Renew. Energy 2019, 131, 268–283.spa
dcterms.bibliographicCitation16. Pinheiro, E.; Bandeiras, F.; Gomes, M.; Coelho, P.; Fernandes, J. Performance analysis of wind generators and PV systems in industrial small-scale applications. Renew. Sustain. Energy Rev. 2019, 110, 392–401.spa
dcterms.bibliographicCitation17. Tsay, M.-Y. A bibliometric analysis of hydrogen energy literature, 1965–2005. Scientometrics 2008, 75, 421–438.spa
dcterms.bibliographicCitation18. He, M.; Zhang, Y.; Gong, L.; Zhou, Y.; Song, X.; Zhu, W.; Zhang, M.; Zhang, Z. Bibliometrical analysis of hydrogen storage. Int. J. Hydrogen Energy 2019, 44, 28206–28226.spa
dcterms.bibliographicCitation19. Tanç, B.; Arat, H.T.; Conker, Ç.; Baltacio˘ glu, E.; Aydin, K. Energy distribution analyses of an additional traction battery on hydrogen fuel cell hybrid electric vehicle. Int. J. Hydrogen Energy 2019.spa
dcterms.bibliographicCitation20. Prashanth, B.N.; Pramod, R.; Kumar, G.B.V. Design and development of hybrid wind and solar energy system for power generation. Mater. Today Proc. 2018, 5, 11415–11422.spa
dcterms.bibliographicCitation21. Haddad, A.; Ramadan, M.; Khaled, M.; Ramadan, H.S.; Becherif, M. Triple hybrid system coupling fuel cell with wind turbine and thermal solar system. Int. J. Hydrogen Energy 2019, 45, 11484–11491.spa
dcterms.bibliographicCitation22. Zhang,W.; Maleki, A.; Rosen, M.A.; Liu, J. Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm. Energy Convers. Manag. 2019, 180, 609–621.spa
dcterms.bibliographicCitation23. Ishaq, H.; Dincer, I.; Naterer, G.F. Development and assessment of a solar, wind and hydrogen hybrid trigeneration system. Int. J. Hydrogen Energy 2018, 43, 23148–23160.spa
dcterms.bibliographicCitation24. Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Flowers, L.; Brower, M.; Hale, E.; Phelps, B. 80 and 100 Meter Wind Energy Resource Potential for the United States; Windpower 2010; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2010.spa
dcterms.bibliographicCitation25. Lütkehus, I.; Salecker, H.; Umweltbundesamt, D.E. Onshore wind energy potential in Germany. DEWI Mag. 2013, 43, 23–28.spa
dcterms.bibliographicCitation26. Liu, F.; Sun, F.; Liu,W.;Wang, T.;Wang, H.;Wang, X.; Lim,W.H. On wind speed pattern and energy potential in China. Appl. Energy 2019, 236, 867–876.spa
dcterms.bibliographicCitation27. Antonio, F.; Barrozo, F.; Valencia, G.; Obregon, L.; Arango-Manrique, A.; Núñez Alvarez, J. Energy, economic, and environmental evaluation of a proposed solar-wind power on-grid system using HOMER Pro®: A case study in Colombia. Energies 2020, 13, 761307.spa
dcterms.bibliographicCitation28. Pandiarajan, N.; Muthu, R. Mathematical modeling of photovoltaic module with Simulink. In Proceedings of the 1st International Conference on Electrical Energy Systems (ICEES), Newport Beach, CA, USA, 3–5 January 2011; pp. 258–263.spa
dcterms.bibliographicCitation29. Khan, M.J.; Iqbal, M.T. Dynamic modeling and simulation of a small wind–fuel cell hybrid energy system. Renew. Energy 2005, 30, 421–439.spa
dcterms.bibliographicCitation30. ¸Sen, S.; Demirer, G. Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res. 2003, 37, 1868–1878.spa
dcterms.bibliographicCitation31. Kader, A.A.; Colina-Irezabal, M.L. Métodos de mezclado, muestreo y análisis de gases. Tecnología Postcosecha de Cultivos Hortofrutícolas 2007, 24, 169–174.spa
dcterms.bibliographicCitation32. Valencia, G.; Benavides, A.; Cárdenas, Y. Economic and environmental multiobjective optimization of a wind-solar-fuel cell hybrid energy system in the Colombian Caribbean region. Energies 2019, 12, 2119.spa
dcterms.bibliographicCitation33. Meshram, P.M.; Kanojiya, R.G. Tuning of PID controller using ziegler-nichols method for speed control of DC motor. In Proceedings of the IEEE International Conference on Advances in Engineering, Science and Management (ICAESM), Nagapattinam, India, 30–31 March 2012; pp. 117–122.spa
dcterms.bibliographicCitation34. Smith, C.A.; Corripio, A.B. Principles and Practice of Automatic Process Control;Wiley: New York, NY, USA, 1985; Volume 2.spa
dcterms.bibliographicCitation35. Shinskey, F.G. Feedback Controllers for the Process Industries; McGraw-Hill: New York, NY, USA, 1994.spa
dcterms.bibliographicCitation36. Dorf, R.C.; Bishop, R.H. Modern Control Systems, 12th ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2011.spa
dcterms.bibliographicCitation37. Valencia Ochoa, G.; Núñez Alvarez, J.; Vanegas Chamorro, M. Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar—Colombia. Data Brief 2019, 27, 104753.spa
dcterms.bibliographicCitation38. De la Cruz Buelvas, J.; Valencia Ochoa, G.; Vanegas Chamorro, M. Estudio estadístico de la velocidad y la dirección del viento en los departamentos de Atlántico y Bolívar en Colombia. Ingeniare Revista Chilena de Ingeniería 2018, 26, 319–328.spa
dcterms.bibliographicCitation39. Carta, J.A.; Ramírez, P. Analysis of two-component mixtureWeibull statistics for estimation of wind speed distributions. Renew. Energy 2007, 32, 518–531.spa
dcterms.bibliographicCitation40. Seguro, J.V.; Lambert, T.W. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J. Wind Eng. Ind. Aerodyn. 2000, 85, 75–84.spa
dcterms.bibliographicCitation41. He, J.; Choe, S.-Y.; Hong, C.-O. Analysis and control of a hybrid fuel delivery system for a polymer electrolyte membrane fuel cell. J. Power Sources 2008, 185, 973–984.spa
dcterms.bibliographicCitation42. Granda-Gutiérrez, E.E.; Orta, O.A.; Díaz-Guillén, J.C.; Jimenez, M.A.; Osorio, M.; Gonzleáz, M.A. Modelado y simulación de celdas y paneles solares. Congreso Internacional de Ingeniería Electrónica 2013, 35, 17–22.spa
dcterms.bibliographicCitation43. Valencia, G.; Glen, G.; Turizo, J.; Chamorro Coneo, R.J. Mimo generalized predictive control for a small wind turbine–fuel cell hybrid energy system. In Proceedings of the ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences, San Francisco, CA, USA, 19–23 July 2009; pp. 557–562.spa
dcterms.bibliographicCitation44. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/app10093093
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordshybrid system; wind turbine; photovoltaic system; PEM fuel cell; performance indicatorsspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por