Mostrar el registro sencillo del ítem

dc.contributor.authorEspinel Blanco, Edwin
dc.contributor.otherValencia Ochoa, Guillermo
dc.contributor.otherDuarte Forero, Jorge
dc.date.accessioned2022-11-15T21:02:04Z
dc.date.available2022-11-15T21:02:04Z
dc.date.issued2020-06-21
dc.date.submitted2020-03-27
dc.identifier.urihttps://hdl.handle.net/20.500.12834/925
dc.description.abstractThis paper presents the application of an energy characterization method based on the ISO 50001 standard in a dry paper production plant. This plant operates using electricity, gas, and coal as energy sources. The last two energy sources are used to produce the steam and hot air used in the paper drying process. Through energy characterization, indicators such as energy baseline and consumption indicators were calculated for the plant, with which improvement opportunities were identified. These improvement opportunities were used as case studies for each energy source used and were based on the actual state of the plant. 2011 Midpoint+ ILCD method data was selected from the Ecoinvent database, using OpenLCA 1.7.0 for the energy assessment. The impact categories analyzed in this study were ecotoxicity, eutrophication of rivers and seas, climate change, and human toxicity. As a result of this work, it was found that energy-saving was possible by adjusting the production rate to a load factor of 77%, which implies a gas consumption of 1.6 kWh/kg and a value in the climate change category of 88.5 kg of CO2 equivalent. In addition, some technological improvement opportunities were economical and environmentally evaluated as a result of the sustainable improvement strategy implemented with energy management and life cycle assessment. The study of these technological opportunities showed that in order to achieve a sustainable industrial process, it is important to take into account energy, economic, and environmental criteria in the continuous improvement of the paper production process. In addition, it is of vital importance to analyze alternatives for technological change, which have a greater impact than operational alternatives according to energy, environmental and economic criteria.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMDPI AGspa
dc.titleCombining Energy Management Indicators and Life Cycle Assessment Indicators to Promote Sustainability in a Paper Production Plantspa
dcterms.bibliographicCitation1. Osorio Zapata, E.M.; ONU (Organización de las Naciones Unidas); IDEAM; PNUD; MADS; DNP; CANCILLERÍA. Convención Marco sobre el Cambio Climático—PARIS. J. Chem. Inf. Model. 2015, 21930, 40.spa
dcterms.bibliographicCitation2. UNIDO. Industrial Development Report 2011 Industrial Energy E ciency for Sustainable Wealth Creation; UNIDO: Vienna, Austria, 2011; ISBN 9789211064483.spa
dcterms.bibliographicCitation3. U.S. Energy Information Administration. International Energy Outlook 2019 with projections to 2050. Available online: https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf (accessed on 20 January 2020).spa
dcterms.bibliographicCitation4. ICONTEC. Ntc-Iso 50001; ICONTEC: Bogota, Colombia, 2011; p. 24.spa
dcterms.bibliographicCitation5. Akimoto, H. Global Air Quality and Pollution. Science 2003, 302, 1716–1719.spa
dcterms.bibliographicCitation6. Naciones Unidas. Acuerdo de París; Naciones Unidas: New York, NY, USA, 2015; p. 29.spa
dcterms.bibliographicCitation7. Girbau-LListuella, F.; Díaz-González, F.; Sumper, A. Optimization of the operation of smart rural grids through a novel energy management system. Energies 2018, 11, 9.spa
dcterms.bibliographicCitation8. Jovanovi´c, B.; Filipovi´c, J.; Baki´c, V. Energy management system implementation in Serbian manufacturing —Plan-Do-Check-Act cycle approach. J. Clean. Prod. 2017, 162, 1144–1156.spa
dcterms.bibliographicCitation9. Petrecca, G. Industrial Energy Management: Principles and Applications. Ind. Energy Manag. 1993, 49, 6221.spa
dcterms.bibliographicCitation10. Jovanovi´c, B.; Filipovi´c, J. ISO 50001 standard-based energy management maturity model—Proposal and validation in industry. J. Clean. Prod. 2016, 112, 2744–2755.spa
dcterms.bibliographicCitation11. Dall’O’, G.; Ferrari, S.; Bruni, E.; Bramonti, L. E ective implementation of ISO 50001: A case study on energy management for heating load reduction for a social building stock in Northern Italy. Energy Build. 2020, 219, 110029.spa
dcterms.bibliographicCitation12. Gopalakrishnan, B.; Ramamoorthy, K.; Crowe, E.; Chaudhari, S.; Latif, H.Astructured approach for facilitating the implementation of ISO 50001 standard in the manufacturing sector. Sustain. Energy Technol. Assess. 2014, 7, 154–165.spa
dcterms.bibliographicCitation13. Bonacina, F.; De Propris, L.; Marchegiani, A.; Mori, F. Industrial Energy Management Systems in Italy: State of the Art and Perspective. Energy Procedia 2015, 82, 562–569.spa
dcterms.bibliographicCitation14. van der Giesen, C.; Cucurachi, S.; Guinée, J.; Kramer, G.J.; Tukker, A. A critical view on the current application of LCA for new technologies and recommendations for improved practice. J. Clean. Prod. 2020, 259, 120904.spa
dcterms.bibliographicCitation15. Yilbas, B.S.; Shaukat, M.M.; Afzal, A.A.; Ashraf, F. Life cycle analysis for laser welding of alloys. Opt. Laser Technol. 2020, 126, 106064.spa
dcterms.bibliographicCitation16. Cheng, G.; Zhao, Y.; Pan, S.; Wang, X.; Dong, C. A comparative life cycle analysis of wheat straw utilization modes in China. Energy 2020, 194, 116914.spa
dcterms.bibliographicCitation17. Ramírez, R.; Gutiérrez, A.S.; Eras, J.J.C.; Valencia, K.; Hernández, B.; Forero, J.D. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 2019, 241, 118412.spa
dcterms.bibliographicCitation18. Orcesi, A.D.; Feraille, A.; Chataigner, S. Fatigue strengthening of steel structures using high modulus CFRP plates: Development of a life-cycle analysis approach. Constr. Build. Mater. 2019, 227, 116628.spa
dcterms.bibliographicCitation19. Jullien, A.; Proust, C.; Yazoghli-Marzouk, O. LCA of alternative granular materials—Assessment of ecotoxicity and toxicty for road case studies. Constr. Build. Mater. 2019, 227, 116737.spa
dcterms.bibliographicCitation20. Rahman, S.M.A.; Hachicha, A.A.; Ghenai, C.; Saidur, R.; Said, Z. Performance and life cycle analysis of a novel portable solar thermoelectric refrigerator. Case Stud. Therm. Eng. 2020, 19, 100599.spa
dcterms.bibliographicCitation21. Restrepo, A.; Becerra, R.; Tibaquirá, J.E.G. Energetic and carbon footprint analysis in manufacturing process of bamboo boards in Colombia. J. Clean. Prod. 2016, 126, 563–571.spa
dcterms.bibliographicCitation22. Junnila, S. Life cycle management of energy-consuming products in companies using IO-LCA. Int. J. Life Cycle Assess. 2008, 13, 432.spa
dcterms.bibliographicCitation23. Masternak-Janus, A.; Rybaczewska-Błazejowska, M. Life cycle analysis of tissue paper manufacturing from virgin pulp or recycled waste paper. Manag. Prod. Eng. Rev. 2015, 6, 47–54.spa
dcterms.bibliographicCitation24. Poopak, S.; Agamuthu, P. Life cycle impact assessment (LCIA) of paper making process in Iran. Afr. J. Biotechnol. 2011, 10, 4860–4870.spa
dcterms.bibliographicCitation25. Pelser,W.A.; Vosloo, J.C.; Mathews, M.J. Results and prospects of applying an ISO 50001 based reporting system on a cement plant. J. Clean. Prod. 2018, 198, 642–653.spa
dcterms.bibliographicCitation26. Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. 1982, 44, 139–160.spa
dcterms.bibliographicCitation27. Díaz de Junguitu, A.; Allur, E. The Adoption of Environmental Management Systems Based on ISO 14001, EMAS, and Alternative Models for SMEs: A Qualitative Empirical Study. Sustainability 2019, 11, 7015.spa
dcterms.bibliographicCitation28. Ochoa, G.V.; Rojas, J.P.; Forero, J.D. Advance Exergo-Economic Analysis of aWaste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267.spa
dcterms.bibliographicCitation29. Ren, J. Chapter 16—Integrated data Envelopment Analysis,Weighting Method and Life Cycle Thinking: AQuantitative Framework for Life Cycle Sustainability Improvement; Ren, J., Toniolo, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 329–344. ISBN 978-0-12-818355-7.spa
dcterms.bibliographicCitation30. Gençer, E.; O’Sullivan, F.M. A Framework for Multi-level Life Cycle Analysis of the Energy System. In 29 European Symposium on Computer Aided Process Engineering; Kiss, A.A., Zondervan, E., Lakerveld, R., Özkan, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 763–768. ISBN 1570-7946.spa
dcterms.bibliographicCitation31. Valencia, G.; Cardenas-Gutierrez, J.; Forero, J. Exergy, Economic, and Life-Cycle Assessment of ORC System forWaste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2.spa
dcterms.bibliographicCitation32. Zhou, Z.; Tang, Y.; Chi, Y.; Ni, M.; Buekens, A.Waste-to-energy: A review of life cycle assessment and its extension methods. Waste Manag. Res. 2017, 36, 3–16.spa
dcterms.bibliographicCitation33. Valencia, G.; Benavides, A.; Cárdenas, Y. Economic and environmental multiobjective optimization of a wind-solar-fuel cell hybrid energy system in the Colombian Caribbean region. Energies 2019, 12, 2119.spa
dcterms.bibliographicCitation34. McClelland, S.C.; Arndt, C.; Gordon, D.R.; Thoma, G. Type and number of environmental impact categories used in livestock life cycle assessment: A systematic review. Livest. Sci. 2018, 209, 39–45.spa
dcterms.bibliographicCitation35. Morales, A.; Valencia, G.E.; Cardenas, Y.D. Identification of energy saving potential in steam boiler through an ISO Identification of energy saving potential in steam boiler through an ISO 50001 standard. J. Phys. Conf. Ser. 2018, 1126, 1–7.spa
dcterms.bibliographicCitation36. Navajas, A.; Uriarte, L.; Gandía, L.M. Application of eco-design and life cycle assessment standards for environmental impact reduction of an industrial product. Sustainability 2017, 9, 1724.spa
dcterms.bibliographicCitation37. Poveda-Orjuela, P.P.; García-Díaz, J.C.; Pulido-Rojano, A.; Cañón-Zabala, G. ISO 50001: 2018 and Its Application in a Comprehensive Management System with an Energy-Performance Focus. Energies 2019, 12, 4700.spa
dcterms.bibliographicCitation38. Ochoa, G.V.; Peñaloza, C.A.; Rojas, J.P. Thermoeconomic modelling and parametric study of a simple orc for the recovery ofwaste heat in a 2 MW gas engine under di erentworking fluids. Appl. Sci. 2019, 9, 4256.spa
dcterms.bibliographicCitation39. Valencia, G.; Peñaloza, C.; Forero, J. Thermo-Economic Assessment of a Gas Microturbine-Absorption Chiller Trigeneration System under Di erent Compressor Inlet Air Temperatures. Energies 2019, 12, 4643.spa
dcterms.bibliographicCitation40. Tong, L.; Pu, Z.; Ma, J. Maintenance Supplier Evaluation and Selection for Safe and Sustainable Production in the Chemical Industry: A Case Study. Sustainability 2019, 11, 1533.spa
dcterms.bibliographicCitation41. Aymard, V.; Botta-Genoulaz, V. Normalisation in life-cycle assessment: Consequences of new European factors on decision-making. Supply Chain. Forum 2017, 18, 76–83.spa
dcterms.bibliographicCitation42. Munshi, A.; Gaster, B.; Mattson, T.G.; Ginsburg, D. OpenCL Programming Guide; Pearson Education: London, UK, 2011; ISBN 0132594552.spa
dcterms.bibliographicCitation43. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700.spa
dcterms.bibliographicCitation44. Piero Rojas, J.; Valencia Ochoa, G.; Duarte Forero, J. Comparative Performance of a Hybrid Renewable Energy Generation System with Dynamic Load Demand. Appl. Sci. 2020, 10, 3093.spa
dcterms.bibliographicCitation45. Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermo-economic analysis of di erent exhaust waste-heat recovery systems for natural gas engine based on ORC. Appl. Sci. 2019, 9, 4071.spa
dcterms.bibliographicCitation46. Alibaba, M.; Pourdarbani, R.; Hasan, M.; Manesh, K.; Valencia, G.; Duarte, J. Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon 2020, 6, e03758.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/resources9060075
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsenergy management system; ISO 50001 standard; performance indicators; life cycle assessment; sustainabilityspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por