Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz Uribe, Carlos Enrique
dc.contributor.otherTrilleras Vásquez, Jorge Enrique
dc.contributor.otherVallejo Lozada, William Andrés
dc.date.accessioned2022-11-15T20:58:01Z
dc.date.available2022-11-15T20:58:01Z
dc.date.issued2020-09-26
dc.date.submitted2020-08-22
dc.identifier.citationDíaz-Uribe, C., Trilleras, J. & Vallejo, W. (2018). Estudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconas. Barranquilla: Sello Editorial Universidad del Atlántico.spa
dc.identifier.isbn978-958-5525-80-1
dc.identifier.urihttps://hdl.handle.net/20.500.12834/921
dc.description.abstractLa actividad antioxidante es la propiedad de una sustancia para inhibir la degradación oxidativa y actúa principalmente a través de su capacidad para reaccionar con los radicales libres y oxígeno singulete. El desequilibrio que se presenta en el organismo entre la producción de especies reactivas del oxígeno y la capacidad de un sistema biológico para inhibirlas rápidamente es conocido como estrés oxidativo. Este proceso trae como consecuencia alteraciones de la relación estructura-función en cualquier órgano. En los organismos vivos existen moléculas antioxidantes capaces de retardar o prevenir la oxidación; sin embargo, no siempre este proceso es eficiente por lo que se hace necesario proporcionar al cuerpo otras moléculas antioxidantes que ayuden a combatir el estrés oxidativospa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceEditorial Universidad del Atlántico.spa
dc.titleEstudio cinético de la reactividad del oxígeno singulete con flavonoides y derivados de chalconasspa
dcterms.bibliographicCitationSegal, L. M. & Wilson, R. A. (2018). Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genetics and Biology, 110, 1-9.spa
dcterms.bibliographicCitationFang, G., Liu, C., Wang, Y., Dionysiou, D. & Zhou, D. (2017). Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation. Applied Catalysis B: Environmental, 214, 34-45.spa
dcterms.bibliographicCitationDomínguez-Sánchez, L., Taxt-Lamolle, S. F. M., Hole, E-O., Krivokapi, A., Sagstuen, E. & Haugen, H. J. (2013). TiO2 suspension exposed to H2O2 in ambient light or darkness: Degradation of methylene blue and EPR evidence for radical oxygen species. Applied Catalysis B: Environmental, 142, 662-667.spa
dcterms.bibliographicCitationDunnill, C., Patton, T., Brennan, J., Barrett, J., Dryden, M., Cooke, J., Leaper, D. & Geore Paulus, N. T. (2017). Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. International Wound Journal, 14(1), 89-96.spa
dcterms.bibliographicCitationJena, N. R. (2012). DNA damage by reactive species: Mechanisms, mutation and repair. Journal of Biosciences, 37(3), 503-517.spa
dcterms.bibliographicCitationAggelopoulos, C. A., Tataraki, D. & Rassias, G. (2018). Degradation of atrazine in soil by dielectric barrier discharge plasma - Potential singlet oxygen mediation. Chemical Engineering Journal, 347, 682-694.spa
dcterms.bibliographicCitationDeRosa, M. C. & Crutchley, R. J. Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 233, 351-371.spa
dcterms.bibliographicCitationCarlton, T. S. (2006). Why the lower-energy term of singlet dioxygen has a doubly occupied. Journal of Chemical Education, 83(3), 477-480.spa
dcterms.bibliographicCitationSchweitzer, C. & Schmidt, R. (2003). Physical mechanisms of generation and deactivation of singlet oxygen. Chemical Reviews, 103, 1685-1757.spa
dcterms.bibliographicCitationSalokhiddinov, K. I., Byteva, I. M. & Gurinovich, G. P. (1981). Lifetime of singlet oxygen in various solvents. Journal of Applied Spectroscopy, 34, 561-564.spa
dcterms.bibliographicCitationBregnhøj, M., Westberg, M., Jensen, F. & Ogilby, P. R. (2016). Solvent- dependent singlet oxygen lifetimes: temperature effects implicate tunneling and charge-transfer interactions. Phys Chem Chem Phys, 18(33), 22946-22961.spa
dcterms.bibliographicCitationGaravelli, M., Bernardi, F., Olivucci, M. & Robb, M. A. (1998). DFT study of the reactions between Singlet-Oxygen and a carotenoid model. Journal of the American Chemical Society, 120(39), 10210-10222.spa
dcterms.bibliographicCitationLi, M. Y., Cline, C. S., Koker, E. B., Carmichael, H. H., Chignell, C. F. & Bilski, P. (2001). Quenching of singlet molecular oxygen (1O2) by azide anion in solvent mixtures. Photochemistry and Photobiology, 74(6), 760-764.spa
dcterms.bibliographicCitationAubry, J. M. (1985). Search for singlet oxygen in the decomposition of hydrogen peroxide by mineral compounds in aqueous solutions. Journal of the American Chemical Society, 107, 5844-5849.spa
dcterms.bibliographicCitationCaminade, A. M., Khatib, F. E., Koenig, M. & Aubry, J. M. (1985). Ozonides de phosphite source d’oxygène singulet: rendement, mécanisme. Canadian Journal of Chemistry, 63, 3203-3209.spa
dcterms.bibliographicCitationAubry, J. M., Pierlot, C., Rigaudy, J. & Schmidt, R. (2006). Reversible binding of oxygen to aromatic compounds. Accounts of Chemical Research, 36(9), 668-675.spa
dcterms.bibliographicCitationMaetzke, A. & Knak-Jensen, S. J. (2006). Reaction paths for production of singlet oxygen from hydrogen peroxide and hypochlorite. Chemical Physics Letters, 425(1), 40-43.spa
dcterms.bibliographicCitationNardello, V., Marko, J., Vermeersch, G. & Aubry, J. M. (1995). 90Mo NMR and kinetic studies of peroxomolybdic intermediates involved in the catalytic disproportionation of hydrogen peroxide by molybdate ions. Inorganic Chemistry, 34(20), 4950-4957.spa
dcterms.bibliographicCitationAubry, J. M. & Cazin, B. (1988). Chemical sources of singlet oxygen. 2. Quantitative generation of singlet oxygen from hydrogen peroxide disproportionation catalyzed by molybdate ions.Inorganic Chemistry, 27(12), 2013-2014.spa
dcterms.bibliographicCitationAubry, J. M. & Bouttemy, S. (1997). Preparative oxidation of organic Compounds in microemulsions with singlet oxygen generated chemically by the sodium molybdate/hydrogen peroxide system. Journal of the American Chemical Society, 119(23), 5286-5294.spa
dcterms.bibliographicCitationGollnick, K. (1968). Type II Photooxygenation Reactions in Solution Advances in Photochemistry. Advances in Photochemistry, 6, 1-122.spa
dcterms.bibliographicCitationWilkinson, F. (1993). Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. Journal of Physical and Chemical Reference Data, 22(1), 113-261.spa
dcterms.bibliographicCitationClement, S., Sobhan, M., Deng, W., Camilleri, E. & Goldys, E. M. (2017). Nanoparticle-mediated singlet oxygen generation from photosensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 332, 66-71.spa
dcterms.bibliographicCitationNeam?u, M., N?dejde, C., Hodoroaba, V.-D., Schneider, R. J. & Panne, U. (2018). Singlet oxygen generation potential of porphyrin-sensitized magnetite nanoparticles: Synthesis, characterization and photocatalytic application. Applied Catalysis B: Environmental, 232,553-561.spa
dcterms.bibliographicCitationWojtoniszak, M., Rogi?ska, D., Machali?ski, B., Drozdzik, M. & Mijowska, E. (2013). Graphene oxide functionalized with methylene blue and its performance in singlet oxygen generation. Materials Research Bulletin, 48(7), 2636-2639.spa
dcterms.bibliographicCitationStarik, A. M., Titova, N. S., Bezgin, L. V., Kopchenov, V. I. & Naumov, V. V. (2006). Control of combustion by generation of singlet oxygen molecules in electrical discharge. Czechoslovak Journal of Physics, 56(25), b1357-b1363.spa
dcterms.bibliographicCitationMikata, Y., Takagi, S., Tanahashi, M., Ishii, S., Obata, M., Miyamoto, Y. … Yano, S. (2003). Detection of 1270 nm emission from singlet oxygen and photocytotoxic property of sugar-pendant 60 fullerenes. Bioorganic & medicinal chemistry letters, 13(19), 3289-3292.spa
dcterms.bibliographicCitationWenli, Y. & Yaping Z. (2005). Chemiluminescence evaluation of oxidative damage to biomolecules induced by singlet oxygen and the protective effects of antioxidants. Biochimica et Biophysica Acta, 30(1), 30-34.spa
dcterms.bibliographicCitationLion, Y., Delmelle, M. & Van de Vorst, A. (1976). New method of detecting singlet oxygen production. Nature, 263, 443.spa
dcterms.bibliographicCitationDíaz-Uribe, C. E., Daza, M., Páez-Mozo, E. A., Martínez, F., Guedes, C. & Di Mauro, E. (2013). Visible light singlet oxygen production with tetra(4-carboxyphenyl)porphyrin/SiO2. Journal of Photochemistry and Photobiology A Chemistry, 259, 47-52.spa
dcterms.bibliographicCitationNardello, V., Marti, M. J., Pierlot, C. & Aubry, J. M. (1999). Photochemistry without light: oxidation of rubrene in a microemulsion with a chemical source of singlet molecular oxygen (1O2, 1Dg).Journal ofChemical Education, 76(9), 1285-1288.spa
dcterms.bibliographicCitationFrimer, A. (1979). The reaction of singlet oxygen with olefins: the question of mechanism. Chemical Reviews, 79(5), 359-387.spa
dcterms.bibliographicCitationClennan, E. L. (2000). New mechanistic and synthetic aspects of singlet oxygen chemistry. Tetrahedron, 56(47), 9151-9179.spa
dcterms.bibliographicCitationClennan, E. L. & Mehrsheikh-Mohammadi, M. E. (1983). Addition of singlet oxygen to conjugated dienes. The mechanism of endoperoxide formation. Journal of the American Chemical Society, 105(18), 5932-5933.spa
dcterms.bibliographicCitationChien, S. H., Cheng, M. F., Lau, K. C. & Li, W. K. (2005). Theoretical study of the diels?alder reactions between singlet (1Dg) oxygen andacenes. The Journal of Physical Chemistry A., 109(33), 7509-7518.spa
dcterms.bibliographicCitationDíaz-Uribe, C. E., Vallejo, W. & Martínez, F. (2014). Photooxidation of anthracene under visible light with metallocarboxyphenylporphyrins. Revista Facultad de Ingeniería Universidad de Antioquia, 73, 225-230.spa
dcterms.bibliographicCitationGriesbeck, A. G., Goldfuss, B., Leven, M. & De Kiff, A. Comparison of the singlet oxygen ene reactions of cyclic versus acyclic ?,?-unsaturated ketones: an experimental and computational study. Tetrahedron Letters, 54(23), 2938-2941.spa
dcterms.bibliographicCitationStratakis, M. & Orfanopoulos, M. (2000). Regioselectivity in the Ene reaction of singlet oxygen with alkenes. Tetrahedron, 56(46), 1595-1615.spa
dcterms.bibliographicCitationFoote, C. T. & Denny, R. W. (1971). Chemistry of singlet oxygen. XII. Electronic effects on rate and products of the reaction with olefins. Journal of the American Chemical Society, 93(20), 5162-5167.spa
dcterms.bibliographicCitationJefford, C. W. (1981). The Hydroperoxidation of Olefins by Singlet Oxygen. Validity of the Zwitterionic Peroxide Model. Helvetica Chimica Acta, 64, 252.spa
dcterms.bibliographicCitationMaranzana, A., Chigo, G. & Tonachini, G. (2000). Diradical and Peroxirane Pathways in the [ p2 + p2] Cycloaddition Reactions of 1Dg Dioxygen with Ethene, Methyl Vinyl Ether, and Butadiene: A Density Functional and Multireference Perturbation Theory Study. Journal of the American Chemical Society, 122(7), 1414-1423.spa
dcterms.bibliographicCitationOhkubo, K., Nanjo, T. & Fukuzumi, S. (2006). Photocatalytic oxygenation of olefins with oxygen: Isolation of 1,2-dioxetane and the photocatalytic O-O bond cleavage. Catalysis Today, 117(1), 356-361.spa
dcterms.bibliographicCitationAherne, S. A. & O’Brien, N. M. (2002). Dietary flavonols: Chemistry, food content and metabolism. Nutrition, 18(1), 75-81.spa
dcterms.bibliographicCitationSultana, B. & Anwar, F. (2008). Flavonols (kaempferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chemistry, 108(3), 879-884.spa
dcterms.bibliographicCitationGeissmann, T. A. (1962). The Chemistry of Flavonoids Compounds. Oxford: Pergamon Press.spa
dcterms.bibliographicCitationRijke, E., Out, P., Niessen, W., Ariese, F., Gooijer, C. & Brinkman, U. (2006). Analytical separation and detection methods for flavonoids. Journal of Chromatography A., 1112(1), 31-63.spa
dcterms.bibliographicCitationBrodowska, K. M. (2017). Natural flavonoids: classification, potential role, and application of flavonoid analogues. European Journal of Biological Research, 7(2), 08-123.spa
dcterms.bibliographicCitationCastellano, G., González-Santander, J. L., Lara, A. & Torrens, F. (2013). Classification of flavonoid compounds by using entropy of informationtheory. Phytochemistry, 93, 182-191.spa
dcterms.bibliographicCitationGalleano, M., Verstraeten, S. V., Oteiza, P. I. & Fraga, C. G. (2010). Antioxidant actions of flavonoids: Thermodynamic and kinetic analysis. Archives of Biochemistry and Biophysics, 501(1), 23-30.spa
dcterms.bibliographicCitationChang, S. K., Alasalvar, C. & Shahidi, F. (2018). Superfruits: Phytochemicals, antioxidant efficacies, and health effects - A comprehensive. Critical Reviews in Food Science and Nutrition, 23(10), 1-25.spa
dcterms.bibliographicCitationD’Amelia, V., Aversano, R., Chiaiese, P. & Carputo, D. (2018). The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. Phytochemistry Reviews, 17, 611-625.spa
dcterms.bibliographicCitationPérez-Vizcaino, F. & Fragad, C. G. (2018). Research trends in flavonoids and health. Archives of Biochemistry and Biophysics, 646, 107-112.spa
dcterms.bibliographicCitationPoprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J. & Valko, M. (2017). Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends in Pharmacological Sciences, 38(7),592-607.spa
dcterms.bibliographicCitationPrasad, S., Gupta, S. C. & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95-105.spa
dcterms.bibliographicCitationOchoa, C. D., Wu, R. F. & Terada, L. S. (2018). ROS signaling and ER stress in cardiovascular disease. Molecular Aspects of Medicine, 63,18-29.spa
dcterms.bibliographicCitationWang, Y., Gao, Y., Ding, H., Liu, S., Han, X., Gui, J. & Liu, D. (2017). Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chemistry, 218, 152-158.spa
dcterms.bibliographicCitationSharif, K. M., Rahman, M. M., Azmir, J., Mohamed, A., Jahurul, M. H. A., Sahena, F. & Zaidul, I. S. M. (2014). Experimental design of supercritical fluid extraction - A review. Journal of Food Engineering, 124, 105-116.spa
dcterms.bibliographicCitationGarcía-Castello, E. M., Rodríguez-López, A. D., Mayor, L., Ballesteros, R., Conidi, C. & Cassano, A. (2015). Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. Food Science and Technology, 64(2),1114-1122.spa
dcterms.bibliographicCitationAzwanida, N. N. (2015). A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med Aromat Plants, 4, 196.spa
dcterms.bibliographicCitationBarba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S. & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology, 49, 96-109.spa
dcterms.bibliographicCitationPasrija, D. & Anandharamakrishnan, C. (2015). Techniques for Extraction of Green Tea Polyphenols: A Review. In Food and Bioprocess Technology, 8(5), 935-950.spa
dcterms.bibliographicCitationAhmed, N., Konduru, N. K., Ahmad, S. & Owais, M. (2014). Synthesis of flavonoids based novel tetrahydropyran conjugates (Prins products) and their antiproliferative activity against human cancer cell lines. European Journal of Medicinal Chemistry, 75, 233-246.spa
dcterms.bibliographicCitationYang, Z., He, Y. & Toste, F. D. (2016). Biomimetic Approach to the Catalytic Enantioselective Synthesis of Flavonoids. Journal of the American Chemical Society, 138(1), 9775-9778.spa
dcterms.bibliographicCitationCole, A. M., Hossain, S., Cole, A. M. & Phanstiel, O. (2016). Synthesis and Bioevaluation of Substituted Chalcones, Coumaranones and other Flavonoids as anti-HIV agents. Bioorg Med Chem, 24(12),2768-2776.spa
dcterms.bibliographicCitationHelgren, T. R., Xu, L. L., Sotelo, D., Mehta, Y. R., Korkmaz, M. A., Pavlinov, I. & Aldrich, L. N. (2018). Microwave-Assisted, Asymmetric Synthesis of 3-Amino-2,3-Dihydrobenzofuran Flavonoid Derivatives from Chalcones. Chemistry: A European Journal, 24(18), 4509-4514.spa
dcterms.bibliographicCitationBukhari, S. N. A., Jasamai, M., Jantan, I. & Ahmad, W. (2013). Review of Methods and Various Catalysts Used for Chalcone Synthesis. Mini-Reviews in Organic Chemistry, 10(1), 73-83.spa
dcterms.bibliographicCitationKostanecki, S. V. & Tambor, J. (1899). Ueber die sechs isomeren Monooxybenzalacetophenone (Monooxychalkone). Chemische Berichte, 32, 1921.spa
dcterms.bibliographicCitationGaonkar, S. L. & Vignesh, U. N. (2017). Synthesis and pharmacological properties of chalcones: a review. Research on Chemical Intermediates, 43, 6043-6077.spa
dcterms.bibliographicCitationVerma, S., Srivastava, A. K. & Pandey, O. P. (2018). A Review on Chalcones Synthesis and their Biological Activity. PharmaTutor, 6(2),22-39.spa
dcterms.bibliographicCitationMascarello, A., Chiaradia, L. D., Vernal, J., Villarino, A., Guido, R. V., Perizzolo, P., … Terenzi, H. (2010). Inhibition of Mycobacterium tuberculosis tyrosine phosphatase PtpA by synthetic chalcones: Kinetics, molecular modeling, toxicity and effect on growth. Bioorganic & Medicinal Chemistry, 18(11), 3783-3789.spa
dcterms.bibliographicCitationTomar, V., Bhattacharjee, G., Kamaluddin, Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity. European Journal of Medicinal Chemistry, 45(2), 745-751.spa
dcterms.bibliographicCitationRizvi, S. U. F., Siddiqui, H. L., Johns, M., Detorio, M. & Schinazi, R. F. (2012). Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Medicinal Chemistry Research, 21(21), 3741-3749.spa
dcterms.bibliographicCitationAbdullah, M. I., Mahmood, A., Madni, M., Masood, S. & Kashif, M. (2014). Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. Bioorganic Chemistry, 54, 31-37.spa
dcterms.bibliographicCitationBirari, R. B., Gupta, S., Mohan, C. G. & Bhutani, K. K. (2011). Antiobesity and lipid lowering effects of Glycyrrhiza chalcones: experimental and computational studies. Phytomedicine, 18(8), 795-801.spa
dcterms.bibliographicCitationMahapatra, D. K., Asati, V. & Bharti, S. K. (2015). Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives. European Journal of Medicinal Chemistry, 92, 839-865.spa
dcterms.bibliographicCitationWang, L., Chen, G., Lu, X., Wang, S., Han, S., Li, Y., … Wu, C. (2015). Novel chalcone derivatives as hypoxia-inducible factor (HIF)-1 inhibitor: synthesis, anti-invasive and anti-angiogenic properties. European Journal of Medicinal Chemistry, 89, 88-97.spa
dcterms.bibliographicCitationShweta, S., Bikash, M. & Rakesh, S. (2013). Chalcones as an emerging lead molecule for antimalarial therapy: a review. Journal of Modern Medicinal Chemistry, 1, 64-77.spa
dcterms.bibliographicCitationEvranos Aksöz, B. & Ertan, R. (2011). Chemical and Structural Properties of Chalcones I. FABAD. Journal of Pharmaceutical Sciences, 36(4), 223-242.spa
dcterms.bibliographicCitationLawrence, N. J, Patterson, R. P, Ooi, L.-L., Cook, D. & Ducki, S. (2006). Effects of ?-substitutions on structure and biological activity of anticancer chalcones. Bioorganic & Medicinal Chemistry Letters, 16(22), 5844-5848.spa
dcterms.bibliographicCitationKotireddy, V. & Ramana, K. V. (2016). A review on chalcones. European Journal of Pharmaceutical and Medical Research, 12(2), 564-572.spa
dcterms.bibliographicCitationRosa, G., Seca, A. M. L., Barreto, M. C. & Pinto, D. (2017). Chalcone: A Valuable Scaffold Upgrading by Green Methods. ACS Sustainable Chemistry & Engineering, 5(9), 7467-7480.spa
dcterms.bibliographicCitationSchwöbel, J. A. H., Wondrousch, D., Koleva, Y. K., Madden, J. C., Cronin, M. T. D. & Schüürmann, G. (2010). Prediction of Michael-type acceptor reactivity toward glutathione. Chemical Research in Toxicology, 23(10), 1576-1585.spa
dcterms.bibliographicCitationAmslinger, S., Al-Rifai, N., Winter, K., Wörmann, K., Scholz, R., Baumeister, P., Wild, M. (2013). Reactivity assessment of chalcones by a kinetic thiol assay. Organic & Biomolecular Chemistry, 11(4), 549-554.spa
dcterms.bibliographicCitationGomes, M. N., Muratov, E. N., Pereira, M., Peixoto, J. C., Rosseto, L. P., Cravo, P. V. L., Andrade, C. H. & Neves, B. J. (2017). Chalcone Derivatives: Promising Starting Points for Drug Design. Molecules, 22(8), 1210-1234.spa
dcterms.bibliographicCitationNasir Abbas Bukhari, S., Jasamai, M., Jantan, I. & Ahmad, W. (2013). Review of Methods and Various Catalysts Used for Chalcone Synthesis. Mini-Reviews in Organic Chemistry, 10(1), 73-83.spa
dcterms.bibliographicCitationForoumadi, A., Emami, S., Sorkhi, M., Nakhjiri, M., Nazarian, Z., Heydari, S., … Shafiee, A. (2010). Chromene?Based Synthetic Chalcones as Potent Antileishmanial Agents: Synthesis and Biological Activity. Chemical Biology & Drug Design, 75(6), 590-596.spa
dcterms.bibliographicCitationSivakumar, P. M., Prabhakar, P. K. & Doble, M. (2011). Synthesis, antioxidant evaluation, and quantitative structure–activity relationship studies of chalcones. Medicinal Chemistry Research, 20, 482-492.spa
dcterms.bibliographicCitationDíaz-Uribe, C. E., Vallejo, W., Castellar, W., Trilleras, J., Ortiz, S., Rodríguez- Serrano, A., Zarate, X. & Quiroga, J. (2015). Novel (E)-1-(pyrrole-2-yl)-3-(aryl)-2-(propen-1-one) derivatives as efficient singlet oxygen quenchers: kinetics and quantum chemical calculations. RSC Advances, 5(5), 71565-71572.spa
dcterms.bibliographicCitationGruszka, J., Pawlak, A. & Kruk, J. (2008). Tocochromanols, plastoquinol, and other biological prenyllipids as singlet oxygen quenchers- determination of singlet oxygen quenching rate constants and oxidation products. Free Radical Biology and Medicine, 45(6), 920-928.spa
dcterms.bibliographicCitationDi Mascio, P., Kaiser, S., Devasagayam, T. P. A., Sundquist, A. R. & Sies, H. (1991). Carotenoids, tocopherols and thiols as biological singlet oxygen quenchers. Oxidative Damage & Repair, 18(6), 311-314.spa
dcterms.bibliographicCitationTournaire, C., Croux, S., Maurette, M. T., Beck, I., Hocquaux, M., Braun, A. M. & Olivero, E. (1993). Antioxidant activity of flavonoids: Efficiency of singlet oxygen (1?g) quenching. Journal of Photochemistry and Photobiology B: Biology, 19(3), 205-215.spa
dcterms.bibliographicCitationLiang, D., Zhang, Y., Wu, Z., Chen, Y. J. & Huang, D. (2018). A near infrared singlet oxygen probe and its applications in in vivo imaging and measurement of singlet oxygen quenching activity of flavonoids. Sensors and Actuators B: Chemical, 266, 645-654.spa
dcterms.bibliographicCitationMukai, K., Nagai, S. & Ohara, K. (2005). Kinetic study of the quenching reaction of singlet oxygen by tea catechins in ethanol solution. Free Radical Biology and Medicine, 39(6), 752-761.spa
dcterms.bibliographicCitationMukai, K., Itoh, S., Daifuku, K., Morimoto, H. & Inoue, K. (1993). Kinetic study of the quenching reaction of singlet oxygen by biological hydroquinones and related compounds. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1183(2), 323-326.spa
dcterms.bibliographicCitationDíaz-Uribe, C. E., Oliveros, G., Muñoz-Acevedo, A. & Vallejo Lozada, W. A. (2016). Kinetic study of the quenching of singlet oxygen by naringin isolated from peels of the fruit of bitter orange (Citrus aurantium I.). Revista Cubana de Plantas Medicinales, 21(3), 359-368.spa
dcterms.bibliographicCitation. Aubry, J. M. & Bouttemy, S. (1997). Preparative oxidation of organic compounds in microemulsions with singlet oxygen generated chemically by the sodium molybdate/hydrogen peroxide system. Journal of the American Chemical Society, 119(23), 5286-5294.spa
dcterms.bibliographicCitationThomas, M. J. & Foote, C. S. (1978). Chemistry of singlet oxygen-XXVI. Photooxygenation of phenols. Photochemistry and Photobiology, 27(6), 683-693.spa
dcterms.bibliographicCitationNagai, S., Ohara, K. & Mukai, K. (2005). Kinetic Study of the Quenching Reaction of Singlet Oxygen by Flavonoids in Ethanol Solution. The Journal of Physical Chemistry B., 109(9), 4234-4240.spa
dcterms.bibliographicCitationVieyra, F. E., Boggetti, H. J., Zampini, I. C., Ordoñez, R. M., Isla, M. I., Álvarez, R. M., … Borsarelli, C. D. (2009). Singlet oxygen quenching and radical scavenging capacities of structurally-related flavonoids present in Zuccagnia punctata Cav. Free Radical Research, 43(6),553-564.spa
dcterms.bibliographicCitationMontenegro, M. A., Nazareno, M. A. & Borsarelli, C. D. (2007). Kinetic study of the photosensitized oxygenation of the flavanone naringin and its chalcone. Journal of Photochemistry and Photobiology A: Chemistry, 186(1), 47-56. 101. Ávila, V., Bertolotti, S. G., Criado, S., Pappano, N., Debattista, N. &spa
dcterms.bibliographicCitationGarcía, N. A. (2001). Antioxidant properties of natural flavonoids: quenching and generation of singlet molecular oxygen. International Journal of Food Science and Technology, 36(38), 25-35.spa
dcterms.bibliographicCitationDarmanyan, A. P. & Jenks, W. S. (1998). Charge-Transfer Quenching of Singlet Oxygen O2(1Dg) by Amines and Aromatic Hydrocarbons. The Journal of Physical Chemistry A., 102(1), 7420-7426.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_3248spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsFlavonoidesspa
dc.subject.keywordsdegradación oxidativaspa
dc.subject.keywordsmoléculas antioxidantesspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaLibrospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por