Mostrar el registro sencillo del ítem

dc.contributor.authorRamirez, R.
dc.contributor.otherAvila, E.
dc.contributor.otherLopez, L.
dc.contributor.otherBula, A.
dc.contributor.otherDuarte Forero, J.
dc.date.accessioned2022-11-15T20:55:57Z
dc.date.available2022-11-15T20:55:57Z
dc.date.issued2019-12-25
dc.date.submitted2019-01-06
dc.identifier.urihttps://hdl.handle.net/20.500.12834/915
dc.description.abstractA model has been developed to characterize the cavitation phenomenon in dredging centrifugal pumps. The operating parameters of a cutter type dredger: swing speed, dredging depth, and inclination, impeller rpm, as well as slurry characterizations such as density and velocity, are introduced, to determine how they influence the operation of the dredge pump. The geometric characterization of the hydraulic transport system of the dredger was performed. With the dredge operational ´s parameters, along with the geometric characterization, the pump is modeled in CFD turbomachinery software. To validate the operational points, the CFD model considers the RNG k-e model and the cavitating-multiphase flow. Through the central composite experiment design, the operating conditions range of the dredger is determined, in which the pump can operate and cavitate. This allows validating the model for different operational points. Finally, multiple regression shows the influence of each of the variables in the response obtained. Furthermore, the regression allows an understanding that operating conditions of the dredger must be adjusted to mitigate the phenomenon of cavitation in the dredging process.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceElsevier B.V.spa
dc.titleCFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumpsspa
dcterms.bibliographicCitation[1] S.A. Miedema, A head loss model for slurry transport in the heterogeneous regime, Ocean Eng. 106 (2015) 360–370, https:// doi.org/10.1016/j.oceaneng.2015.07.015.spa
dcterms.bibliographicCitation[2] J. Tang, Q. Wang, Z. Bi, Expert system for operation optimization and control of cutter suction dredger, Expert Syst. Appl. 34 (2) (2008) 2180–2192, https://doi.org/10.1016/j. eswa.2007.02.025.spa
dcterms.bibliographicCitation[3] J. Tang, Q. Wang, T. Zhong, Automatic monitoring and control of cutter suction dredger, Autom. Constr. 18 (2) (2009) 194–203, https://doi.org/10.1016/j.autcon.2008.07.006spa
dcterms.bibliographicCitation[4] J. Tang, Q. Wang, Online fault diagnosis and prevention expert system for dredgers, Expert Syst. Appl. 34 (1) (2008) 511–521, https://doi.org/10.1016/j.eswa.2006.09.032.spa
dcterms.bibliographicCitation[5] S. Chandel, S.N. Singh, V. Seshadri, A comparative study on the performance characteristics of centrifugal and progressive cavity slurry pumps with high concentration fly ash slurries, Part. Sci. Technol. 29 (4) (2011) 378–396, https://doi.org/10.1080/ 02726351.2010.503264.spa
dcterms.bibliographicCitation[6] C. Camargo, C. Garcı´a, J.E. Duarte Forero, A. Rinco´ n, Modelo estadı´stico para la caracterizacio´ n y optimizacio´ n en bombas perife´ ricas, Revista Cientı´fica Ingenierı´a y Desarrollo 36 (1) (2017) 18–39, https://doi.org/10.14482/inde.36.1.10939.spa
dcterms.bibliographicCitation[7] M.C. Roco, G.R. Addie, R. Visintainer, Study on casing performances in centrifugal slurry pumps, Part. Sci. Technol. 3 (1) (1985) 65–88, https://doi.org/10.1080/02726358508906428.spa
dcterms.bibliographicCitation[8] K.C. Wilson, R. Clift, A. Sellgren, Operating points for pipelines carrying concentrated heterogeneous slurries, Powder Technol. 123 (1) (2002) 19–24, https://doi.org/10.1016/S0032-5910(01) 00423-5.spa
dcterms.bibliographicCitation[9] S.R. Shah, S.V. Jain, R.N. Patel, V.J. Lakhera, CFD for centrifugal pumps: a review of the state-of-the-art, Procedia Eng. 51 (2013) 715–720, https://doi.org/10.1016/j. proeng.2013.01.102.spa
dcterms.bibliographicCitation[10] Z.F. Yao, Z.J. Yang, F.J. Wang, Evaluation of near-wall solution approaches for large-eddy simulations of flow in a centrifugal pump impeller, Eng. Appl. Comput. Fluid Mech. 10 (1) (2016) 452–465, https://doi.org/10.1080/ 19942060.2016.1189362.spa
dcterms.bibliographicCitation[11] X.W. Luo, J.I. Bin, Y. Tsujimoto, A review of cavitation in hydraulic machinery, J. Hydrodyn. Ser. B 28 (3) (2016) 335–358, https://doi.org/10.1016/S1001-6058(16)60638-8.spa
dcterms.bibliographicCitation[12] Z.H.U. Bing, H.X. Chen, Cavitating suppression of low specific speed centrifugal pump with gap drainage blades, J. Hydrodyn. Ser. B 24 (5) (2012) 729–736, https://doi.org/10.1016/S1001-6058 (11)60297-7.spa
dcterms.bibliographicCitation[13] A. Peters, H. Sagar, U. Lantermann, O. el Moctar, Numerical modelling and prediction of cavitation erosion, Wear 338 (2015) 189–201, https://doi.org/10.1016/j.wear.2015.06.009.spa
dcterms.bibliographicCitation[14] X.P. Long, Q.Q. Wang, L.Z. Xiao, J.Q. Zhang, M.S. Xu, W.F. Wu, B. Ji, Numerical analysis of bubble dynamics in the diffuser of a jet pump under variable ambient pressure, J. Hydrodyn. Ser. B 29 (3) (2017) 510–519, https://doi.org/10.1016/S1001-6058 (16)60763-1.spa
dcterms.bibliographicCitation[15] H. Liu, Y. Wang, D. Liu, S. Yuan, J. Wang, Assessment of a turbulence model for numerical predictions of sheet-cavitating flows in centrifugal pumps, J. Mech. Sci. Technol. 27 (9) (2013) 2743–2750, https://doi.org/10.1007/s12206-013-0720-8.spa
dcterms.bibliographicCitation[16] X. Long, H. Cheng, B. Ji, R.E. Arndt, X. Peng, Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil, Int. J. Multiph. Flow 100 (2018) 41–56, https://doi.org/10.1016/ j.ijmultiphaseflow.2017.12.002.spa
dcterms.bibliographicCitation[17] F. Bakir, R. Rey, A.G. Gerber, T. Belamri, B. Hutchinson, Numerical and experimental investigations of the cavitating behavior of an inducer, Int. J. Rotating Mach. 10 (1) (2004) 15– 25, https://doi.org/10.1155/S1023621X04000028.spa
dcterms.bibliographicCitation[18] P. Limbach, R. Skoda, Numerical and experimental analysis of cavitating flow in a low specific speed centrifugal pump with different surface roughness, ASME J. Fluids Eng. 139 (10) (2017) 101201, https://doi.org/10.1115/1.4036673.spa
dcterms.bibliographicCitation[19] F. Zhang, S. Yuan, Q. Fu, J. Pei, M. Bo¨ hle, X. Jiang, Cavitation-induced unsteady flow characteristics in the first stage of a centrifugal charging pump, ASME J. Fluids Eng. 139 (1) (2017) 011303, https://doi.org/10.1115/1.4034362.spa
dcterms.bibliographicCitation[20] D.S. Zhang, W.D. Shi, G.J. Zhang, J. Chen, B.B. van Esch, Numerical analysis of cavitation shedding flow around a threedimensional hydrofoil using an improved filter-based model, J. Hydrodyn. Ser. B 29 (2) (2017) 361–375, https://doi.org/10.1016/ S1001-6058(16)60746-1.spa
dcterms.bibliographicCitation[21] Y. Wang, H. Liu, D. Liu, S. Yuan, J. Wang, L. Jiang, Application of the two-phase three-component computational model to predict cavitating flow in a centrifugal pump and its validation, Comput. Fluids 131 (2016) 142–150, https://doi.org/ 10.1016/j.compfluid.2016.03.022.spa
dcterms.bibliographicCitation[22] H.L. Liu, D.X. Liu, Y. Wang, X.F. Wu, J.Wang, Application of modified j-x model to predicting cavitating flow in centrifugal pump, Water Sci. Eng. 6 (3) (2013) 331–339, https://doi.org/ 10.3882/j.issn.1674-2370.2013.03.009.spa
dcterms.bibliographicCitation[23] H. Si, Y. Fuxiang, G. Jing, Numerical simulation of 3D unsteady flow in centrifugal pump by dynamic mesh technique, Procedia Eng. 61 (2013) 270–275, https://doi.org/ 10.1016/j.proeng.2013.08.015.spa
dcterms.bibliographicCitation[24] O. Coutier-Delgosha, R. Fortes-Patella, J.L. Reboud, M. Hofmann, B. Stoffel, Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition, ASME J. Fluids Eng. 125 (6) (2003) 970– 978, https://doi.org/10.1115/1.1596238.spa
dcterms.bibliographicCitation[25] W.G. Li, Modeling viscous oil cavitating flow in a centrifugal pump, ASME J. Fluids Eng. 138 (1) (2016) 011303, https://doi. org/10.1115/1.4031061.spa
dcterms.bibliographicCitation[26] A.A. Babajani, M. Jafari, P.H. Sefat, Numerical investigation of distance effect between two Searasers for hydrodynamic performance, Alex. Eng. J. 55 (3) (2016) 2257–2268, https:// doi.org/10.1016/j.aej.2016.05.022.spa
dcterms.bibliographicCitation[27] D.A. Wilson, Pipeline dredge analytical program with comparison to field data, J. Pipeline Syst. Eng. Pract. 2 (3) (2011) 107–112, https://doi.org/10.1061/(ASCE)PS.1949- 1204.0000078spa
dcterms.bibliographicCitation[28] S.A. Miedema, An analysis of slurry transport at low line speeds, in: ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering, OMAE2014-23437, 2014, https://doi.org/10.1115/OMAE2014-23437.spa
dcterms.bibliographicCitation[29] J. Capecelatro, O. Desjardins, Eulerian-Lagrangian modeling of turbulent liquid–solid slurries in horizontal pipes, Int. J. Multiph. Flow 55 (2013) 64–79, https://doi.org/10.1016/j. ijmultiphaseflow.2013.04.006.spa
dcterms.bibliographicCitation[30] M.K. Gopaliya, D.R. Kaushal, Analysis of effect of grain size on various parameters of slurry flow through pipeline using CFD, Part. Sci. Technol. 33 (4) (2015) 369–384, https://doi.org/ 10.1080/02726351.2014.971988.spa
dcterms.bibliographicCitation[31] D.R. Kaushal, T. Thinglas, Y. Tomita, S. Kuchii, H. Tsukamoto, CFD modeling for pipeline flow of fine particles at high concentration, Int. J. Multiph. Flow 43 (2012) 85–100, https://doi.org/10.1016/j.ijmultiphaseflow.2012.03.005spa
dcterms.bibliographicCitation[32] Cormagdalena, Actualizacio´ n del PMA de los dragados de relimpia y mantenimiento del Canal del Dique, Barranquilla, 2004.spa
dcterms.bibliographicCitation[33] I. Quintero, Estudio del Transporte de Sedimentos en el Rı´o Grande de la Magdalena: Canal de acceso al Puerto de Barranquilla, Doctoral dissertation, Universidad Nacional Auto´noma de Me´xico, 2015.spa
dcterms.bibliographicCitation[34] A.K. Singhal, M.M. Athavale, H. Li, Y. Jiang, Mathematical basis and validation of the full cavitation model, J. Fluids Eng. 124 (3) (2002) 617–624, https://doi.org/10.1115/1.1486223.spa
dcterms.bibliographicCitation[35] G. Fu, A. Untaroiu, An optimum design approach for textured thrust bearing with elliptical-shape dimples using computational fluid dynamics and design of experiments including cavitation, J. Eng. Gas Turbines Power 139 (9) (2017) 092502, https://doi.org/ 10.1115/1.4036188.spa
dcterms.bibliographicCitation[36] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2017.spa
dcterms.bibliographicCitation[37] M. Bilgili, B. Sahin, Comparative analysis of regression and artificial neural network models for wind speed prediction, Meteorol. Atmos. Phys. 109 (1) (2010) 61–72, https://doi.org/ 10.1007/s00703-010-0093-9.spa
dcterms.bibliographicCitation[38] D. Kang, K. Yokota, Analytical study of cavitation surge in a hydraulic system, J. Fluids Eng. 136 (10) (2014) 101103, https:// doi.org/10.1115/1.4027220.spa
dcterms.bibliographicCitation[39] Y. Li, Z. Zhu, W. He, Z. He, Numerical simulation and experimental research on the influence of solid-phase characteristics on centrifugal pump performance, Chin. J. Mech. Eng. 25 (6) (2012) 1184–1189, https://doi.org/10.3901/ cjme.2012.06.1184.spa
dcterms.bibliographicCitation[40] W. Zhao, G. Zhao, Numerical investigation on the transient characteristics of sediment-laden two-phase flow in a centrifugal pump, J. Mech. Sci. Technol. 32 (1) (2018) 167–176, https://doi. org/10.1007/s12206-017-1218-6.spa
dcterms.bibliographicCitation[41] I.J. Karassik, J.P. Messina, P. Cooper, C.C. Heald, Pump Handbook, Vol. 3, McGraw-Hill, New York, 2001.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.aej.2019.12.041
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsCavitation; Centrifugal pump; CFD; Dredging; Slurryspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por