Mostrar el registro sencillo del ítem
CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps
dc.contributor.author | Ramirez, R. | |
dc.contributor.other | Avila, E. | |
dc.contributor.other | Lopez, L. | |
dc.contributor.other | Bula, A. | |
dc.contributor.other | Duarte Forero, J. | |
dc.date.accessioned | 2022-11-15T20:55:57Z | |
dc.date.available | 2022-11-15T20:55:57Z | |
dc.date.issued | 2019-12-25 | |
dc.date.submitted | 2019-01-06 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/915 | |
dc.description.abstract | A model has been developed to characterize the cavitation phenomenon in dredging centrifugal pumps. The operating parameters of a cutter type dredger: swing speed, dredging depth, and inclination, impeller rpm, as well as slurry characterizations such as density and velocity, are introduced, to determine how they influence the operation of the dredge pump. The geometric characterization of the hydraulic transport system of the dredger was performed. With the dredge operational ´s parameters, along with the geometric characterization, the pump is modeled in CFD turbomachinery software. To validate the operational points, the CFD model considers the RNG k-e model and the cavitating-multiphase flow. Through the central composite experiment design, the operating conditions range of the dredger is determined, in which the pump can operate and cavitate. This allows validating the model for different operational points. Finally, multiple regression shows the influence of each of the variables in the response obtained. Furthermore, the regression allows an understanding that operating conditions of the dredger must be adjusted to mitigate the phenomenon of cavitation in the dredging process. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Elsevier B.V. | spa |
dc.title | CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps | spa |
dcterms.bibliographicCitation | [1] S.A. Miedema, A head loss model for slurry transport in the heterogeneous regime, Ocean Eng. 106 (2015) 360–370, https:// doi.org/10.1016/j.oceaneng.2015.07.015. | spa |
dcterms.bibliographicCitation | [2] J. Tang, Q. Wang, Z. Bi, Expert system for operation optimization and control of cutter suction dredger, Expert Syst. Appl. 34 (2) (2008) 2180–2192, https://doi.org/10.1016/j. eswa.2007.02.025. | spa |
dcterms.bibliographicCitation | [3] J. Tang, Q. Wang, T. Zhong, Automatic monitoring and control of cutter suction dredger, Autom. Constr. 18 (2) (2009) 194–203, https://doi.org/10.1016/j.autcon.2008.07.006 | spa |
dcterms.bibliographicCitation | [4] J. Tang, Q. Wang, Online fault diagnosis and prevention expert system for dredgers, Expert Syst. Appl. 34 (1) (2008) 511–521, https://doi.org/10.1016/j.eswa.2006.09.032. | spa |
dcterms.bibliographicCitation | [5] S. Chandel, S.N. Singh, V. Seshadri, A comparative study on the performance characteristics of centrifugal and progressive cavity slurry pumps with high concentration fly ash slurries, Part. Sci. Technol. 29 (4) (2011) 378–396, https://doi.org/10.1080/ 02726351.2010.503264. | spa |
dcterms.bibliographicCitation | [6] C. Camargo, C. Garcı´a, J.E. Duarte Forero, A. Rinco´ n, Modelo estadı´stico para la caracterizacio´ n y optimizacio´ n en bombas perife´ ricas, Revista Cientı´fica Ingenierı´a y Desarrollo 36 (1) (2017) 18–39, https://doi.org/10.14482/inde.36.1.10939. | spa |
dcterms.bibliographicCitation | [7] M.C. Roco, G.R. Addie, R. Visintainer, Study on casing performances in centrifugal slurry pumps, Part. Sci. Technol. 3 (1) (1985) 65–88, https://doi.org/10.1080/02726358508906428. | spa |
dcterms.bibliographicCitation | [8] K.C. Wilson, R. Clift, A. Sellgren, Operating points for pipelines carrying concentrated heterogeneous slurries, Powder Technol. 123 (1) (2002) 19–24, https://doi.org/10.1016/S0032-5910(01) 00423-5. | spa |
dcterms.bibliographicCitation | [9] S.R. Shah, S.V. Jain, R.N. Patel, V.J. Lakhera, CFD for centrifugal pumps: a review of the state-of-the-art, Procedia Eng. 51 (2013) 715–720, https://doi.org/10.1016/j. proeng.2013.01.102. | spa |
dcterms.bibliographicCitation | [10] Z.F. Yao, Z.J. Yang, F.J. Wang, Evaluation of near-wall solution approaches for large-eddy simulations of flow in a centrifugal pump impeller, Eng. Appl. Comput. Fluid Mech. 10 (1) (2016) 452–465, https://doi.org/10.1080/ 19942060.2016.1189362. | spa |
dcterms.bibliographicCitation | [11] X.W. Luo, J.I. Bin, Y. Tsujimoto, A review of cavitation in hydraulic machinery, J. Hydrodyn. Ser. B 28 (3) (2016) 335–358, https://doi.org/10.1016/S1001-6058(16)60638-8. | spa |
dcterms.bibliographicCitation | [12] Z.H.U. Bing, H.X. Chen, Cavitating suppression of low specific speed centrifugal pump with gap drainage blades, J. Hydrodyn. Ser. B 24 (5) (2012) 729–736, https://doi.org/10.1016/S1001-6058 (11)60297-7. | spa |
dcterms.bibliographicCitation | [13] A. Peters, H. Sagar, U. Lantermann, O. el Moctar, Numerical modelling and prediction of cavitation erosion, Wear 338 (2015) 189–201, https://doi.org/10.1016/j.wear.2015.06.009. | spa |
dcterms.bibliographicCitation | [14] X.P. Long, Q.Q. Wang, L.Z. Xiao, J.Q. Zhang, M.S. Xu, W.F. Wu, B. Ji, Numerical analysis of bubble dynamics in the diffuser of a jet pump under variable ambient pressure, J. Hydrodyn. Ser. B 29 (3) (2017) 510–519, https://doi.org/10.1016/S1001-6058 (16)60763-1. | spa |
dcterms.bibliographicCitation | [15] H. Liu, Y. Wang, D. Liu, S. Yuan, J. Wang, Assessment of a turbulence model for numerical predictions of sheet-cavitating flows in centrifugal pumps, J. Mech. Sci. Technol. 27 (9) (2013) 2743–2750, https://doi.org/10.1007/s12206-013-0720-8. | spa |
dcterms.bibliographicCitation | [16] X. Long, H. Cheng, B. Ji, R.E. Arndt, X. Peng, Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil, Int. J. Multiph. Flow 100 (2018) 41–56, https://doi.org/10.1016/ j.ijmultiphaseflow.2017.12.002. | spa |
dcterms.bibliographicCitation | [17] F. Bakir, R. Rey, A.G. Gerber, T. Belamri, B. Hutchinson, Numerical and experimental investigations of the cavitating behavior of an inducer, Int. J. Rotating Mach. 10 (1) (2004) 15– 25, https://doi.org/10.1155/S1023621X04000028. | spa |
dcterms.bibliographicCitation | [18] P. Limbach, R. Skoda, Numerical and experimental analysis of cavitating flow in a low specific speed centrifugal pump with different surface roughness, ASME J. Fluids Eng. 139 (10) (2017) 101201, https://doi.org/10.1115/1.4036673. | spa |
dcterms.bibliographicCitation | [19] F. Zhang, S. Yuan, Q. Fu, J. Pei, M. Bo¨ hle, X. Jiang, Cavitation-induced unsteady flow characteristics in the first stage of a centrifugal charging pump, ASME J. Fluids Eng. 139 (1) (2017) 011303, https://doi.org/10.1115/1.4034362. | spa |
dcterms.bibliographicCitation | [20] D.S. Zhang, W.D. Shi, G.J. Zhang, J. Chen, B.B. van Esch, Numerical analysis of cavitation shedding flow around a threedimensional hydrofoil using an improved filter-based model, J. Hydrodyn. Ser. B 29 (2) (2017) 361–375, https://doi.org/10.1016/ S1001-6058(16)60746-1. | spa |
dcterms.bibliographicCitation | [21] Y. Wang, H. Liu, D. Liu, S. Yuan, J. Wang, L. Jiang, Application of the two-phase three-component computational model to predict cavitating flow in a centrifugal pump and its validation, Comput. Fluids 131 (2016) 142–150, https://doi.org/ 10.1016/j.compfluid.2016.03.022. | spa |
dcterms.bibliographicCitation | [22] H.L. Liu, D.X. Liu, Y. Wang, X.F. Wu, J.Wang, Application of modified j-x model to predicting cavitating flow in centrifugal pump, Water Sci. Eng. 6 (3) (2013) 331–339, https://doi.org/ 10.3882/j.issn.1674-2370.2013.03.009. | spa |
dcterms.bibliographicCitation | [23] H. Si, Y. Fuxiang, G. Jing, Numerical simulation of 3D unsteady flow in centrifugal pump by dynamic mesh technique, Procedia Eng. 61 (2013) 270–275, https://doi.org/ 10.1016/j.proeng.2013.08.015. | spa |
dcterms.bibliographicCitation | [24] O. Coutier-Delgosha, R. Fortes-Patella, J.L. Reboud, M. Hofmann, B. Stoffel, Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition, ASME J. Fluids Eng. 125 (6) (2003) 970– 978, https://doi.org/10.1115/1.1596238. | spa |
dcterms.bibliographicCitation | [25] W.G. Li, Modeling viscous oil cavitating flow in a centrifugal pump, ASME J. Fluids Eng. 138 (1) (2016) 011303, https://doi. org/10.1115/1.4031061. | spa |
dcterms.bibliographicCitation | [26] A.A. Babajani, M. Jafari, P.H. Sefat, Numerical investigation of distance effect between two Searasers for hydrodynamic performance, Alex. Eng. J. 55 (3) (2016) 2257–2268, https:// doi.org/10.1016/j.aej.2016.05.022. | spa |
dcterms.bibliographicCitation | [27] D.A. Wilson, Pipeline dredge analytical program with comparison to field data, J. Pipeline Syst. Eng. Pract. 2 (3) (2011) 107–112, https://doi.org/10.1061/(ASCE)PS.1949- 1204.0000078 | spa |
dcterms.bibliographicCitation | [28] S.A. Miedema, An analysis of slurry transport at low line speeds, in: ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering, OMAE2014-23437, 2014, https://doi.org/10.1115/OMAE2014-23437. | spa |
dcterms.bibliographicCitation | [29] J. Capecelatro, O. Desjardins, Eulerian-Lagrangian modeling of turbulent liquid–solid slurries in horizontal pipes, Int. J. Multiph. Flow 55 (2013) 64–79, https://doi.org/10.1016/j. ijmultiphaseflow.2013.04.006. | spa |
dcterms.bibliographicCitation | [30] M.K. Gopaliya, D.R. Kaushal, Analysis of effect of grain size on various parameters of slurry flow through pipeline using CFD, Part. Sci. Technol. 33 (4) (2015) 369–384, https://doi.org/ 10.1080/02726351.2014.971988. | spa |
dcterms.bibliographicCitation | [31] D.R. Kaushal, T. Thinglas, Y. Tomita, S. Kuchii, H. Tsukamoto, CFD modeling for pipeline flow of fine particles at high concentration, Int. J. Multiph. Flow 43 (2012) 85–100, https://doi.org/10.1016/j.ijmultiphaseflow.2012.03.005 | spa |
dcterms.bibliographicCitation | [32] Cormagdalena, Actualizacio´ n del PMA de los dragados de relimpia y mantenimiento del Canal del Dique, Barranquilla, 2004. | spa |
dcterms.bibliographicCitation | [33] I. Quintero, Estudio del Transporte de Sedimentos en el Rı´o Grande de la Magdalena: Canal de acceso al Puerto de Barranquilla, Doctoral dissertation, Universidad Nacional Auto´noma de Me´xico, 2015. | spa |
dcterms.bibliographicCitation | [34] A.K. Singhal, M.M. Athavale, H. Li, Y. Jiang, Mathematical basis and validation of the full cavitation model, J. Fluids Eng. 124 (3) (2002) 617–624, https://doi.org/10.1115/1.1486223. | spa |
dcterms.bibliographicCitation | [35] G. Fu, A. Untaroiu, An optimum design approach for textured thrust bearing with elliptical-shape dimples using computational fluid dynamics and design of experiments including cavitation, J. Eng. Gas Turbines Power 139 (9) (2017) 092502, https://doi.org/ 10.1115/1.4036188. | spa |
dcterms.bibliographicCitation | [36] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2017. | spa |
dcterms.bibliographicCitation | [37] M. Bilgili, B. Sahin, Comparative analysis of regression and artificial neural network models for wind speed prediction, Meteorol. Atmos. Phys. 109 (1) (2010) 61–72, https://doi.org/ 10.1007/s00703-010-0093-9. | spa |
dcterms.bibliographicCitation | [38] D. Kang, K. Yokota, Analytical study of cavitation surge in a hydraulic system, J. Fluids Eng. 136 (10) (2014) 101103, https:// doi.org/10.1115/1.4027220. | spa |
dcterms.bibliographicCitation | [39] Y. Li, Z. Zhu, W. He, Z. He, Numerical simulation and experimental research on the influence of solid-phase characteristics on centrifugal pump performance, Chin. J. Mech. Eng. 25 (6) (2012) 1184–1189, https://doi.org/10.3901/ cjme.2012.06.1184. | spa |
dcterms.bibliographicCitation | [40] W. Zhao, G. Zhao, Numerical investigation on the transient characteristics of sediment-laden two-phase flow in a centrifugal pump, J. Mech. Sci. Technol. 32 (1) (2018) 167–176, https://doi. org/10.1007/s12206-017-1218-6. | spa |
dcterms.bibliographicCitation | [41] I.J. Karassik, J.P. Messina, P. Cooper, C.C. Heald, Pump Handbook, Vol. 3, McGraw-Hill, New York, 2001. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1016/j.aej.2019.12.041 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Cavitation; Centrifugal pump; CFD; Dredging; Slurry | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |