dc.contributor.author | Valencia Ochoa, Guillermo | |
dc.contributor.other | Rojas, Jhan Piero | |
dc.contributor.other | Duarte Forero, Jorge | |
dc.date.accessioned | 2022-11-15T20:52:45Z | |
dc.date.available | 2022-11-15T20:52:45Z | |
dc.date.issued | 2020-01-05 | |
dc.date.submitted | 2019-11-19 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/906 | |
dc.description.abstract | This manuscript presents an advanced exergo-economic analysis of a waste heat recovery
system based on the organic Rankine cycle from the exhaust gases of an internal combustion engine.
Di erent operating conditions were established in order to find the exergy destroyed values in the
components and the desegregation of them, as well as the rate of fuel exergy, product exergy, and loss
exergy. The component with the highest exergy destroyed values was heat exchanger 1, which
is a shell and tube equipment with the highest mean temperature di erence in the thermal cycle.
However, the values of the fuel cost rate (47.85 USD/GJ) and the product cost rate (197.65 USD/GJ)
revealed the organic fluid pump (pump 2) as the device with the main thermo-economic opportunity
of improvement, with an exergo-economic factor greater than 91%. In addition, the component with
the highest investment costs was the heat exchanger 1 with a value of 2.769 USD/h, which means
advanced exergo-economic analysis is a powerful method to identify the correct allocation of the
irreversibility and highest cost, and the real potential for improvement is not linked to the interaction
between components but to the same component being studied. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | MDPI AG | spa |
dc.title | Advance Exergo-Economic Analysis of aWaste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine | spa |
dcterms.bibliographicCitation | 1. Petrakopoulou, F.; Tsatsaronis, G.; Morosuk, T.; Carassai, A. Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy 2012, 41, 146–152. | spa |
dcterms.bibliographicCitation | 2. Morosuk, T.; Tsatsaronis, G. Advanced exergy-based methods used to understand and improve energy-conversion systems. Energy 2019, 169, 238–246. | spa |
dcterms.bibliographicCitation | 3. Anvari, S.; Khoshbakhti Saray, R.; Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production. Energy 2015, 91, 925–939. | spa |
dcterms.bibliographicCitation | 4. Tsatsaronis, G. Strengths and Limitations of Exergy Analysis BT-Thermodynamic Optimization of Complex Energy Systems; Bejan, A., Mamut, E., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 93–100, ISBN 978-94-011-4685-2. | spa |
dcterms.bibliographicCitation | 5. Tsatsaronis, G.; Park, M.-H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Convers. Manag. 2002, 43, 1259–1270. | spa |
dcterms.bibliographicCitation | 6. Kelly, S. Energy Systems Improvement based on Endogenous and Exogenous Exergy Destruction. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2008. | spa |
dcterms.bibliographicCitation | 7. Petrakopoulou, F. Comparative Evaluation of Power Plants with CO2 Capture: Thermodynamic, Economic and Environmental Performance. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2010. | spa |
dcterms.bibliographicCitation | 8. Long, R.; Bao, Y.J.; Huang, X.M.; Liu, W. Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery. Energy 2014, 73, 475–483. | spa |
dcterms.bibliographicCitation | 9. Long, R.; Kuang, Z.; Li, B.; Liu, Z.; Liu,W. Exergy analysis and performance optimization of Kalina cycle system 11 (KCS-11) for low grade waste heat recovery. Energy Procedia 2019, 158, 1354–1359. | spa |
dcterms.bibliographicCitation | 10. Tian, H.; Shu, G.; Wei, H.; Liang, X.; Liu, L. Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE). Energy 2012, 47, 125–136. | spa |
dcterms.bibliographicCitation | 11. Zare, V. A comparative exergoeconomic analysis of di erent ORC configurations for binary geothermal power plants. Energy Convers. Manag. 2015, 105, 127–138. | spa |
dcterms.bibliographicCitation | 12. Kerme, E.D.; Orfi, J. Exergy-based thermodynamic analysis of solar driven organic Rankine cycle. J. Therm. Eng. 2015, 1, 192–202. | spa |
dcterms.bibliographicCitation | 13. Boyano, A.; Morosuk, T.; Blanco-Marigorta, A.M.; Tsatsaronis, G. Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production. J. Clean. Prod. 2012, 20, 152–160. | spa |
dcterms.bibliographicCitation | 14. Morozyuk, T.; Tsatsaronis, G. Strengths and Limitations of Advanced Exergetic Analyses. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Diego, CA, USA, 15–21 November 2013; Volume 6. | spa |
dcterms.bibliographicCitation | 15. Mortazavi, A.; Ameri, M. Conventional and advanced exergy analysis of solar flat plate air collectors. Energy 2018, 142, 277–288. | spa |
dcterms.bibliographicCitation | 16. Mohammadi, Z.; Fallah, M.; Mahmoudi, S.M.S. Advanced exergy analysis of recompression supercritical CO2 cycle. Energy 2019, 178, 631–643. | spa |
dcterms.bibliographicCitation | 17. Yue, T.; Lior, N. Exergo-economic competitiveness criteria for hybrid power cycles using multiple heat sources of di erent temperatures. Energy 2017, 135, 943–961. | spa |
dcterms.bibliographicCitation | 18. Marami Milani, S.; Khoshbakhti Saray, R.; Najafi, M. Exergo-economic analysis of di erent power-cycle configurations driven by heat recovery of a gas engine. Energy Convers. Manag. 2019, 186, 103–119. | spa |
dcterms.bibliographicCitation | 19. Petrakopoulou, F.; Tsatsaronis, G.; Morosuk, T. Advanced Exergoeconomic Analysis of a Power Plant with CO2 Capture. Energy Procedia 2015, 75, 2253–2260. | spa |
dcterms.bibliographicCitation | 20. Ambriz-Díaz, V.M.; Rubio-Maya, C.; Ruiz-Casanova, E.; Martínez-Patiño, J.; Pastor-Martínez, E. Advanced exergy and exergoeconomic analysis for a polygeneration plant operating in geothermal cascade. Energy Convers. Manag. 2019, 112227. | spa |
dcterms.bibliographicCitation | 21. Nazari, N.; Heidarnejad, P.; Porkhial, S. Multi-objective optimization of a combined steam-organic Rankine cycle based on exergy and exergo-economic analysis for waste heat recovery application. Energy Convers. Manag. 2016, 127, 366–379. | spa |
dcterms.bibliographicCitation | 22. Mikielewicz, D.;Wajs, J.; Ziółkowski, P.; Mikielewicz, J. Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat. Energy 2016, 97, 11–19. | spa |
dcterms.bibliographicCitation | 23. Scaccabarozzi, R.; Tavano, M.; Invernizzi, C.M.; Martelli, E. Thermodynamic Optimization of heat recovery ORCs for heavy duty Internal Combustion Engine: Pure fluids vs. zeotropic mixtures. Energy Procedia 2017, 129, 168–175. | spa |
dcterms.bibliographicCitation | 24. Zhang, H.; Guan, X.; Ding, Y.; Liu, C. Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. J. Clean. Prod. 2018, 183, 1207–1215. | spa |
dcterms.bibliographicCitation | 25. Galindo, J.; Ruiz, S.; Dolz, V.; Royo-Pascual, L. Advanced exergy analysis for a bottoming organic rankine cycle coupled to an internal combustion engine. Energy Convers. Manag. 2016, 126, 217–227. | spa |
dcterms.bibliographicCitation | 26. Dai, B.; Zhu, K.; Wang, Y.; Sun, Z.; Liu, Z. Evaluation of organic Rankine cycle by using hydrocarbons as working fluids: Advanced exergy and advanced exergoeconomic analyses. Energy Convers. Manag. 2019, 197, 111876. | spa |
dcterms.bibliographicCitation | 27. Valencia, G.; Acevedo, C.; Duarte, J. Thermoeconomic optimization with PSO algotithm of waste heat recovery system based on Organic Rankine Cycle system for a natural engine. Energies 2019, 12, 4165. | spa |
dcterms.bibliographicCitation | 28. Ochoa, G.V.; Peñaloza, C.A.; Rojas, J.P. Thermoeconomic modelling and parametric study of a simple orc for the recovery ofwaste heat in a 2 MW gas engine under di erentworking fluids. Appl. Sci. 2019, 9, 4526. | spa |
dcterms.bibliographicCitation | 29. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700. | spa |
dcterms.bibliographicCitation | 30. Regulagadda, P.; Dincer, I.; Naterer, G.F. Exergy analysis of a thermal power plant with measured boiler and turbine losses. Appl. Therm. Eng. 2010, 30, 970–976. | spa |
dcterms.bibliographicCitation | 31. Ahmadi, G.; Toghraie, D.; Azimian, A.; Akbari, O.A. Evaluation of synchronous execution of full repowering and solar assisting in a 200MW steam power plant, a case study. Appl. Therm. Eng. 2017, 112, 111–123. | spa |
dcterms.bibliographicCitation | 32. Taner, T.; Sivrioglu, M. Energy–exergy analysis and optimisation of a model sugar factory in Turkey. Energy 2015, 93, 641–654. | spa |
dcterms.bibliographicCitation | 33. Ahmadi, G.; Toghraie, D.; Akbari, O.A. Solar parallel feed water heating repowering of a steam power plant: A case study in Iran. Renew. Sustain. Energy Rev. 2017, 77, 474–485. | spa |
dcterms.bibliographicCitation | 34. Valencia, G.; Fontalvo, A.; Cárdenas, Y.; Duarte, J.; Isaza, C. Energy and exergy analysis of di erent exhaust waste heat recovery systems for natural gas engine based on ORC. Energies 2019, 12, 2378. | spa |
dcterms.bibliographicCitation | 35. Quoilin, S.; Aumann, R.; Grill, A.; Schuster, A.; Lemort, V.; Splietho , H. Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles. Appl. Energy 2011, 88, 2183–2190. [CrossRef] 36. Sayyaadi, H. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system. Appl. Energy 2009, 86, 867–879. | spa |
dcterms.bibliographicCitation | 37. Ghaebi, H.; Amidpour, M.; Karimkashi, S.; Rezayan, O. Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover. Int. J. Energy Res. 2011, 35, 697–709. | spa |
dcterms.bibliographicCitation | 38. Bejan, A.; Tsatsaronis, G.; Moran, M.J. Thermal Design & Optimization; JohnWiley & Sons: Hoboken, NJ, USA, 1995; ISBN 0-471-58467-3. | spa |
dcterms.bibliographicCitation | 39. Valencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21, 655. | spa |
dcterms.bibliographicCitation | 40. Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic analysis of di erent exhaust waste-heat recovery systems for natural gas engine based on ORC. Appl. Sci. 2019, 9, 4017. | spa |
dcterms.bibliographicCitation | 41. Morosuk, T.; Tsatsaronis, G. Advanced Exergoeconomic Analysis of a Refrigeration Machine: Part 1—Methodology and First Evaluation. In Proceedings of theASME2011 International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; pp. 47–56. | spa |
dcterms.bibliographicCitation | 42. Morosuk, T.; Tsatsaronis, G. Advanced Exergoeconomic Analysis of a Refrigeration Machine: Part 2—Improvement. In Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; pp. 57–65. | spa |
dcterms.bibliographicCitation | 43. Budes, F.B.; Ochoa, G.V.; Escorcia, Y.C. Hybrid PV andWind grid-connected renewable energy system to reduce the gas emission and operation cost. Contemp. Eng. Sci. 2017, 10, 1269–1278. | spa |
dcterms.bibliographicCitation | 44. Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum power from fluid flow by applying the first and second laws of thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903. | spa |
dcterms.bibliographicCitation | 36. Sayyaadi, H. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system. Appl. Energy 2009, 86, 867–879. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.doi | 10.3390/en13010267 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | advanced exergo-economic analysis; waste heat recovery system; ORC; endogenous exergy; exogenous exergy | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |