Show simple item record

dc.contributor.authorValencia Ochoa, Guillermo
dc.contributor.otherRojas, Jhan Piero
dc.contributor.otherDuarte Forero, Jorge
dc.date.accessioned2022-11-15T20:52:45Z
dc.date.available2022-11-15T20:52:45Z
dc.date.issued2020-01-05
dc.date.submitted2019-11-19
dc.identifier.urihttps://hdl.handle.net/20.500.12834/906
dc.description.abstractThis manuscript presents an advanced exergo-economic analysis of a waste heat recovery system based on the organic Rankine cycle from the exhaust gases of an internal combustion engine. Di erent operating conditions were established in order to find the exergy destroyed values in the components and the desegregation of them, as well as the rate of fuel exergy, product exergy, and loss exergy. The component with the highest exergy destroyed values was heat exchanger 1, which is a shell and tube equipment with the highest mean temperature di erence in the thermal cycle. However, the values of the fuel cost rate (47.85 USD/GJ) and the product cost rate (197.65 USD/GJ) revealed the organic fluid pump (pump 2) as the device with the main thermo-economic opportunity of improvement, with an exergo-economic factor greater than 91%. In addition, the component with the highest investment costs was the heat exchanger 1 with a value of 2.769 USD/h, which means advanced exergo-economic analysis is a powerful method to identify the correct allocation of the irreversibility and highest cost, and the real potential for improvement is not linked to the interaction between components but to the same component being studied.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMDPI AGspa
dc.titleAdvance Exergo-Economic Analysis of aWaste Heat Recovery System Using ORC for a Bottoming Natural Gas Enginespa
dcterms.bibliographicCitation1. Petrakopoulou, F.; Tsatsaronis, G.; Morosuk, T.; Carassai, A. Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy 2012, 41, 146–152.spa
dcterms.bibliographicCitation2. Morosuk, T.; Tsatsaronis, G. Advanced exergy-based methods used to understand and improve energy-conversion systems. Energy 2019, 169, 238–246.spa
dcterms.bibliographicCitation3. Anvari, S.; Khoshbakhti Saray, R.; Bahlouli, K. Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production. Energy 2015, 91, 925–939.spa
dcterms.bibliographicCitation4. Tsatsaronis, G. Strengths and Limitations of Exergy Analysis BT-Thermodynamic Optimization of Complex Energy Systems; Bejan, A., Mamut, E., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 93–100, ISBN 978-94-011-4685-2.spa
dcterms.bibliographicCitation5. Tsatsaronis, G.; Park, M.-H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Convers. Manag. 2002, 43, 1259–1270.spa
dcterms.bibliographicCitation6. Kelly, S. Energy Systems Improvement based on Endogenous and Exogenous Exergy Destruction. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2008.spa
dcterms.bibliographicCitation7. Petrakopoulou, F. Comparative Evaluation of Power Plants with CO2 Capture: Thermodynamic, Economic and Environmental Performance. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2010.spa
dcterms.bibliographicCitation8. Long, R.; Bao, Y.J.; Huang, X.M.; Liu, W. Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery. Energy 2014, 73, 475–483.spa
dcterms.bibliographicCitation9. Long, R.; Kuang, Z.; Li, B.; Liu, Z.; Liu,W. Exergy analysis and performance optimization of Kalina cycle system 11 (KCS-11) for low grade waste heat recovery. Energy Procedia 2019, 158, 1354–1359.spa
dcterms.bibliographicCitation10. Tian, H.; Shu, G.; Wei, H.; Liang, X.; Liu, L. Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE). Energy 2012, 47, 125–136.spa
dcterms.bibliographicCitation11. Zare, V. A comparative exergoeconomic analysis of di erent ORC configurations for binary geothermal power plants. Energy Convers. Manag. 2015, 105, 127–138.spa
dcterms.bibliographicCitation12. Kerme, E.D.; Orfi, J. Exergy-based thermodynamic analysis of solar driven organic Rankine cycle. J. Therm. Eng. 2015, 1, 192–202.spa
dcterms.bibliographicCitation13. Boyano, A.; Morosuk, T.; Blanco-Marigorta, A.M.; Tsatsaronis, G. Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production. J. Clean. Prod. 2012, 20, 152–160.spa
dcterms.bibliographicCitation14. Morozyuk, T.; Tsatsaronis, G. Strengths and Limitations of Advanced Exergetic Analyses. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Diego, CA, USA, 15–21 November 2013; Volume 6.spa
dcterms.bibliographicCitation15. Mortazavi, A.; Ameri, M. Conventional and advanced exergy analysis of solar flat plate air collectors. Energy 2018, 142, 277–288.spa
dcterms.bibliographicCitation16. Mohammadi, Z.; Fallah, M.; Mahmoudi, S.M.S. Advanced exergy analysis of recompression supercritical CO2 cycle. Energy 2019, 178, 631–643.spa
dcterms.bibliographicCitation17. Yue, T.; Lior, N. Exergo-economic competitiveness criteria for hybrid power cycles using multiple heat sources of di erent temperatures. Energy 2017, 135, 943–961.spa
dcterms.bibliographicCitation18. Marami Milani, S.; Khoshbakhti Saray, R.; Najafi, M. Exergo-economic analysis of di erent power-cycle configurations driven by heat recovery of a gas engine. Energy Convers. Manag. 2019, 186, 103–119.spa
dcterms.bibliographicCitation19. Petrakopoulou, F.; Tsatsaronis, G.; Morosuk, T. Advanced Exergoeconomic Analysis of a Power Plant with CO2 Capture. Energy Procedia 2015, 75, 2253–2260.spa
dcterms.bibliographicCitation20. Ambriz-Díaz, V.M.; Rubio-Maya, C.; Ruiz-Casanova, E.; Martínez-Patiño, J.; Pastor-Martínez, E. Advanced exergy and exergoeconomic analysis for a polygeneration plant operating in geothermal cascade. Energy Convers. Manag. 2019, 112227.spa
dcterms.bibliographicCitation21. Nazari, N.; Heidarnejad, P.; Porkhial, S. Multi-objective optimization of a combined steam-organic Rankine cycle based on exergy and exergo-economic analysis for waste heat recovery application. Energy Convers. Manag. 2016, 127, 366–379.spa
dcterms.bibliographicCitation22. Mikielewicz, D.;Wajs, J.; Ziółkowski, P.; Mikielewicz, J. Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat. Energy 2016, 97, 11–19.spa
dcterms.bibliographicCitation23. Scaccabarozzi, R.; Tavano, M.; Invernizzi, C.M.; Martelli, E. Thermodynamic Optimization of heat recovery ORCs for heavy duty Internal Combustion Engine: Pure fluids vs. zeotropic mixtures. Energy Procedia 2017, 129, 168–175.spa
dcterms.bibliographicCitation24. Zhang, H.; Guan, X.; Ding, Y.; Liu, C. Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. J. Clean. Prod. 2018, 183, 1207–1215.spa
dcterms.bibliographicCitation25. Galindo, J.; Ruiz, S.; Dolz, V.; Royo-Pascual, L. Advanced exergy analysis for a bottoming organic rankine cycle coupled to an internal combustion engine. Energy Convers. Manag. 2016, 126, 217–227.spa
dcterms.bibliographicCitation26. Dai, B.; Zhu, K.; Wang, Y.; Sun, Z.; Liu, Z. Evaluation of organic Rankine cycle by using hydrocarbons as working fluids: Advanced exergy and advanced exergoeconomic analyses. Energy Convers. Manag. 2019, 197, 111876.spa
dcterms.bibliographicCitation27. Valencia, G.; Acevedo, C.; Duarte, J. Thermoeconomic optimization with PSO algotithm of waste heat recovery system based on Organic Rankine Cycle system for a natural engine. Energies 2019, 12, 4165.spa
dcterms.bibliographicCitation28. Ochoa, G.V.; Peñaloza, C.A.; Rojas, J.P. Thermoeconomic modelling and parametric study of a simple orc for the recovery ofwaste heat in a 2 MW gas engine under di erentworking fluids. Appl. Sci. 2019, 9, 4526.spa
dcterms.bibliographicCitation29. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700.spa
dcterms.bibliographicCitation30. Regulagadda, P.; Dincer, I.; Naterer, G.F. Exergy analysis of a thermal power plant with measured boiler and turbine losses. Appl. Therm. Eng. 2010, 30, 970–976.spa
dcterms.bibliographicCitation31. Ahmadi, G.; Toghraie, D.; Azimian, A.; Akbari, O.A. Evaluation of synchronous execution of full repowering and solar assisting in a 200MW steam power plant, a case study. Appl. Therm. Eng. 2017, 112, 111–123.spa
dcterms.bibliographicCitation32. Taner, T.; Sivrioglu, M. Energy–exergy analysis and optimisation of a model sugar factory in Turkey. Energy 2015, 93, 641–654.spa
dcterms.bibliographicCitation33. Ahmadi, G.; Toghraie, D.; Akbari, O.A. Solar parallel feed water heating repowering of a steam power plant: A case study in Iran. Renew. Sustain. Energy Rev. 2017, 77, 474–485.spa
dcterms.bibliographicCitation34. Valencia, G.; Fontalvo, A.; Cárdenas, Y.; Duarte, J.; Isaza, C. Energy and exergy analysis of di erent exhaust waste heat recovery systems for natural gas engine based on ORC. Energies 2019, 12, 2378.spa
dcterms.bibliographicCitation35. Quoilin, S.; Aumann, R.; Grill, A.; Schuster, A.; Lemort, V.; Splietho , H. Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles. Appl. Energy 2011, 88, 2183–2190. [CrossRef] 36. Sayyaadi, H. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system. Appl. Energy 2009, 86, 867–879.spa
dcterms.bibliographicCitation37. Ghaebi, H.; Amidpour, M.; Karimkashi, S.; Rezayan, O. Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover. Int. J. Energy Res. 2011, 35, 697–709.spa
dcterms.bibliographicCitation38. Bejan, A.; Tsatsaronis, G.; Moran, M.J. Thermal Design & Optimization; JohnWiley & Sons: Hoboken, NJ, USA, 1995; ISBN 0-471-58467-3.spa
dcterms.bibliographicCitation39. Valencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21, 655.spa
dcterms.bibliographicCitation40. Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic analysis of di erent exhaust waste-heat recovery systems for natural gas engine based on ORC. Appl. Sci. 2019, 9, 4017.spa
dcterms.bibliographicCitation41. Morosuk, T.; Tsatsaronis, G. Advanced Exergoeconomic Analysis of a Refrigeration Machine: Part 1—Methodology and First Evaluation. In Proceedings of theASME2011 International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; pp. 47–56.spa
dcterms.bibliographicCitation42. Morosuk, T.; Tsatsaronis, G. Advanced Exergoeconomic Analysis of a Refrigeration Machine: Part 2—Improvement. In Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; pp. 57–65.spa
dcterms.bibliographicCitation43. Budes, F.B.; Ochoa, G.V.; Escorcia, Y.C. Hybrid PV andWind grid-connected renewable energy system to reduce the gas emission and operation cost. Contemp. Eng. Sci. 2017, 10, 1269–1278.spa
dcterms.bibliographicCitation44. Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum power from fluid flow by applying the first and second laws of thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903.spa
dcterms.bibliographicCitation36. Sayyaadi, H. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system. Appl. Energy 2009, 86, 867–879.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.doi10.3390/en13010267
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsadvanced exergo-economic analysis; waste heat recovery system; ORC; endogenous exergy; exogenous exergyspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por