Mostrar el registro sencillo del ítem
Combustion and Performance Study of Low-Displacement Compression Ignition Engines Operating with Diesel–Biodiesel Blends
dc.contributor.author | Valencia Ochoa, Guillermo | |
dc.contributor.other | Acevedo Peñaloza, Carlos | |
dc.contributor.other | Duarte Forero, Jorge | |
dc.date.accessioned | 2022-11-15T20:52:35Z | |
dc.date.available | 2022-11-15T20:52:35Z | |
dc.date.issued | 2020-01-30 | |
dc.date.submitted | 2019-11-09 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/905 | |
dc.description.abstract | This study investigated the influence of di erent biodiesel blends produced from residual sunflower oil and palm oil from agroindustry liquid waste on the characteristics of the combustion process, performance, and emissions in a single-cylinder diesel engine. For the analysis of the combustion process, a diagnostic model was developed based on the cylinder pressure signal, which allows the calculation of the heat release rate, the accumulated heat rate, and the temperature in the combustion chamber. This is to assess the influence of these parameters on engine emissions. The experiments on the diesel engine were carried out using five types of fuel: conventional diesel, two biodiesel blends of residual palm oil (PB5 and PB10), and two biodiesel blends formed with palm oil and sunflower oil residues (PB5SB5 and PB10SB5). The engine was running in four di erent modes, which covered its entire operating area. Experimental results show that the in-cylinder pressure curves decrease as the percentage of biodiesel in the fuel increases. Similarly, the results showed a decrease in the heat release rate for biodiesel blends. The diagrams of the accumulated heat release curves were larger for fuels with higher biodiesel content. This e ect is reflected in the thermal e ciency of biodiesel blends since the maximum thermal e ciencies were 29.4%, 30%, 30.6%, 31.2%, and 31.8% for PB10SB5, PB5SB5, PB10, PB5, and diesel, respectively. The emission analysis showed that the blends of biodiesel PB5SB5 and PB10SB allowed a greater reduction in the emissions of CO, CO2, HC, and opacity of smoke in all the modes of operation tested, in comparison with the blends of biodiesel PB5 and PB10. However, NOx emissions increased. In general, biodiesel with the percentage of residual sunflower oil does not cause a significant change in the combustion process and engine performance, when compared to biodiesel that includes only residual palm oil. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | MDPI AG | spa |
dc.title | Combustion and Performance Study of Low-Displacement Compression Ignition Engines Operating with Diesel–Biodiesel Blends | spa |
dcterms.bibliographicCitation | 1. Yoo, H.; Park, B.Y.; Cho, H.; Park, J. Performance Optimization of a Diesel Engine with a Two-Stage Turbocharging System and Dual-Loop EGR Using Multi-Objective Pareto Optimization Based on Diesel Cycle Simulation. Energies 2019, 12, 4223. | spa |
dcterms.bibliographicCitation | 2. Tian, H.; Cui, J.; Yang, T.; Fu, Y.; Tian, J.; Long,W. Experimental Research on Controllability and Emissions of Jet-Controlled Compression Ignition Engine. Energies 2019, 12, 2936. | spa |
dcterms.bibliographicCitation | 3. Dhar, A.; Agarwal, A.K. E ect of Karanja biodiesel blend on engine wear in a diesel engine. Fuel 2014, 134, 81–89. | spa |
dcterms.bibliographicCitation | 4. Hirner, F.S.; Hwang, J.; Bae, C.; Patel, C.; Gupta, T.; Agarwal, A.K. Performance and emission evaluation of a small-bore biodiesel compression-ignition engine. Energy 2019, 183, 971–982. | spa |
dcterms.bibliographicCitation | 5. Kumar, N.; Varun, G.; Chauhan, S.R. Performance and emission characteristics of biodiesel from di erent origins: A review. Renew. Sustain. Energy Rev. 2013, 21, 633–658. | spa |
dcterms.bibliographicCitation | 6. Zahan, K.; Kano, M. Biodiesel Production from Palm Oil, Its By-Products, and Mill E uent: A Review. Energies 2018, 11. | spa |
dcterms.bibliographicCitation | 7. Bari, S.; Hossain, S.N. Performance and emission analysis of a diesel engine running on palm oil diesel (POD). Energy Procedia 2019, 160, 92–99. | spa |
dcterms.bibliographicCitation | 8. Sajjadi, B.; Raman, A.A.A.; Arandiyan, H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew. Sustain. Energy Rev. 2016, 63, 62–92. | spa |
dcterms.bibliographicCitation | 9. Berchmans, H.J.; Hirata, S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 2008, 99, 1716–1721. | spa |
dcterms.bibliographicCitation | 10. Thushari, P.G.I.; Babel, S. Biodiesel Production FromWaste Palm Oil Using Palm Empty Fruit Bunch-Derived Novel Carbon Acid Catalyst. J. Energy Resour. Technol. 2018, 140, 1–10. | spa |
dcterms.bibliographicCitation | 11. Sumathi, S.; Chai, S.P.; Mohamed, A.R. Utilization of oil palm as a source of renewable energy in Malaysia. Renew. Sustain. Energy Rev. 2008, 12, 2404–2421. | spa |
dcterms.bibliographicCitation | 12. Kurnia, J.C.; Jangam, S.V.; Akhtar, S.; Sasmito, A.P.; Mujumdar, A.S. Advances in biofuel production from oil palm and palm oil processing wastes: A review. Biofuel Res. J. 2016, 3, 332–346. | spa |
dcterms.bibliographicCitation | 13. Sulaiman, S.A.; Taha, F.F.F. Drying of Oil Palm Fronds Using Concentrated Solar Thermal Power. Appl. Mech. Mater. 2014, 699, 449–454. | spa |
dcterms.bibliographicCitation | 14. Lam, S.S.; Tsang, Y.F.; Yek, P.N.Y.; Liew, R.K.; Osman, M.S.; Peng, W.; Lee, W.H.; Park, Y.-K. Co-processing of oil palm waste and waste oil via microwave co-torrefaction: A waste reduction approach for producing solid fuel product with improved properties. Process Saf. Environ. Prot. 2019, 128, 30–35. | spa |
dcterms.bibliographicCitation | 15. Cho, H.J.; Kim, J.-K.; Cho, H.-J.; Yeo, Y.-K. Techno-Economic Study of a Biodiesel Production from Palm Fatty Acid Distillate. Ind. Eng. Chem. Res. 2012, 52, 462–468. | spa |
dcterms.bibliographicCitation | 16. Liew,W.; Muda, K.; Azraai, M.; A am, A.; Loh, S. Agro-industrial waste sustainable management–a potential source of economic benefits to palm oil mills in Malaysia. J. Urban Environ. Eng. 2017, 11, 108–118. | spa |
dcterms.bibliographicCitation | 17. Ahmad Farid, M.A.; Hassan, M.A.; Taufiq-Yap, Y.H.; Ibrahim, M.L.; Othman, M.R.; Ali, A.A.M.; Shirai, Y. Production of methyl esters from waste cooking oil using a heterogeneous biomass-based catalyst. Renew. Energy. 2017, 114, 638–643. | spa |
dcterms.bibliographicCitation | 18. Anuar, M.R.; Abdullah, A.Z. Ultrasound-assisted biodiesel production from waste cooking oil using hydrotalcite prepared by combustion method as catalyst. Appl. Catal. A Gen. 2016, 514, 214–223. | spa |
dcterms.bibliographicCitation | 19. Hong, I.K.; Jeon, H.; Kim, H.; Lee, S.B. Preparation of waste cooking oil based biodiesel using microwave irradiation energy. J. Ind. Eng. Chem. 2016, 42, 107–112. | spa |
dcterms.bibliographicCitation | 20. Ramírez, R.; Gutiérrez, A.S.; Eras, J.J.C.; Valencia, K.; Hernández, B.; Forero, J.D. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 2019, 241, 118412. | spa |
dcterms.bibliographicCitation | 21. Saydut, A.; Kafadar, A.B.; Tonbul, Y.; Kaya, C.; Aydin, F.; Hamamci, C. Comparison of the Biodiesel Quality Produced from Refined Sunflower (Helianthus Annuus L) Oil and Waste Cooking Oil. Energy Explor. Exploit. 2010, 28, 499–512. | spa |
dcterms.bibliographicCitation | 22. Saifuddin, M.; Boyce, A.N. Biodiesel production from waste cooking sunflower oil and environmental impact analysis. Kuwait J. Sci. 2016, 43, 110–117. | spa |
dcterms.bibliographicCitation | 23. Elkelawy, M.; Alm-Eldin Bastawissi, H.; Esmaeil, K.K.; Radwan, A.M.; Panchal, H.; Sadasivuni, K.K.; Ponnamma, D.; Walvekar, R. Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with diesel/biodiesel blends. Fuel 2019, 255. | spa |
dcterms.bibliographicCitation | 24. Gupta, J.; Agarwal, M.; Dalai, A.K. Optimization of biodiesel production from mixture of edible and nonedible vegetable oils. Biocatal. Agric. Biotechnol. 2016, 8, 112–120. | spa |
dcterms.bibliographicCitation | 25. De Almeida, V.F.; García-Moreno, P.J.; Guadix, A.; Guadix, E.M. Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Process. Technol. 2015, 133, 152–160. | spa |
dcterms.bibliographicCitation | 26. Costa, J.F.; Almeida, M.F.; Alvim-Ferraz, M.C.M.; Dias, J.M. Biodiesel production using oil from fish canning industry wastes. Energy Convers. Manag. 2013, 74, 17–23. | spa |
dcterms.bibliographicCitation | 27. Valencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21. | spa |
dcterms.bibliographicCitation | 28. Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics. J. Energy Resour. Technol. 2017, 139. | spa |
dcterms.bibliographicCitation | 29. Ochoa, G.V.; Isaza-Roldan, C.; Forero, J.D. A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2-megawatt four-stroke internal combustion engine. Heliyon 2019, 5, e02700. | spa |
dcterms.bibliographicCitation | 30. Valencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermoeconomic optimization with PSO Algorithm of waste heat recovery systems based on Organic Rankine Cycle system for a natural gas engine. Energies 2019, 12, 4165. | spa |
dcterms.bibliographicCitation | 31. Glassman, I. Combustion; Academic Press Inc.: Cambridge, MA, USA, 1987. | spa |
dcterms.bibliographicCitation | 32. Woschni, G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coe cient in the Internal Combustion Engine. SAE Tech. Pap. 1967. | spa |
dcterms.bibliographicCitation | 33. Woschni, G. Die berechnung der wandverluste und der thermischen belastung der bauteile von dieselmotoren. MTZ Mot. Z. 1970, 31, S491–S499. | spa |
dcterms.bibliographicCitation | 34. Consuegra, F.; Bula, A.; Guillín, W.; Sánchez, J.; Duarte Forero, J. Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines. Energies 2019, 12. | spa |
dcterms.bibliographicCitation | 35. Irimescu, A.; Di Iorio, S.; Merola, S.S.; Sementa, P.; Vaglieco, B.M. Evaluation of compression ratio and blow-by rates for spark ignition engines based on in-cylinder pressure trace analysis. Energy Convers. Manag. 2018, 162, 98–108. | spa |
dcterms.bibliographicCitation | 36. Alptekin, E.; Canakci, M. Characterization of the key fuel properties of methyl ester–diesel fuel blends. Fuel 2009, 88, 75–80. | spa |
dcterms.bibliographicCitation | 37. Agarwal, A.K.; Das, L.M. Biodiesel Development and Characterization for Use as a Fuel in Compression Ignition Engines. J. Eng. Gas Turbines Power. 2001, 123, 440–447. | spa |
dcterms.bibliographicCitation | 38. Rosha, P.; Mohapatra, S.K.; Mahla, S.K.; Cho, H.; Chauhan, B.S.; Dhir, A. E ect of compression ratio on combustion, performance, and emission characteristics of compression ignition engine fueled with palm (B20) biodiesel blend. Energy 2019, 178, 676–684. | spa |
dcterms.bibliographicCitation | 39. Asokan, M.A.; Senthur Prabu, S.; Bade, P.K.K.; Nekkanti, V.M.; Gutta, S.S.G. Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine. Energy 2019, 173, 883–892. | spa |
dcterms.bibliographicCitation | 40. Musthafa, M.M.; Kumar, T.A.; Mohanraj, T.; Chandramouli, R. A comparative study on performance, combustion and emission characteristics of diesel engine fuelled by biodiesel blends with and without an additive. Fuel 2018, 225, 343–348. | spa |
dcterms.bibliographicCitation | 41. Can, Ö. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture. Energy Convers. Manag. 2014, 87, 676–686. | spa |
dcterms.bibliographicCitation | 42. Dueso, C.; Muñoz, M.; Moreno, F.; Arroyo, J.; Gil-Lalaguna, N.; Bautista, A.; Gonzalo, A.; Sánchez, J.L. Performance and emissions of a diesel engine using sunflower biodiesel with a renewable antioxidant additive from bio-oil. Fuel 2018, 234, 276–285. | spa |
dcterms.bibliographicCitation | 43. Canakci, M. Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Bioresour. Technol. 2007, 98, 1167–1175. | spa |
dcterms.bibliographicCitation | 45. Özener, O.; Yüksek, L.; Ergenç, A.T.; Özkan, M. E ects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 2014, 115, 875–883. | spa |
dcterms.bibliographicCitation | 46. Emiro˘ glu, A.O.; ¸Sen, M. Combustion, performance and emission characteristics of various alcohol blends in a single cylinder diesel engine. Fuel 2018, 212, 34–40. | spa |
dcterms.bibliographicCitation | 47. Abed, K.A.; Gad, M.S.; El Morsi, A.K.; Sayed, M.M.; Elyazeed, S.A. E ect of biodiesel fuels on diesel engine emissions. Egypt. J. Pet. 2019, 28, 183–188. | spa |
dcterms.bibliographicCitation | 48. Ong, H.C.; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Yusaf, T. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy. 2014, 69, 427–445. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/app10030907 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | biodiesel; combustion process; emissions; diesel engine; thermodynamic model | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |