Mostrar el registro sencillo del ítem
Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres
dc.contributor.author | Zamora Lagos, Sara Isabel | |
dc.contributor.other | Murillo Salas, Jefferson | |
dc.contributor.other | Valencia Zapata, Mayra Eliana | |
dc.contributor.other | Mina Hernández, José Herminsul | |
dc.contributor.other | Grande Tovar, Carlos David | |
dc.date.accessioned | 2022-11-15T20:51:43Z | |
dc.date.available | 2022-11-15T20:51:43Z | |
dc.date.issued | 2020-11-20 | |
dc.date.submitted | 2020-09-21 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/901 | |
dc.description.abstract | Chitosan (CS) has special properties such as biocompatibility, biodegradability, antibacterial, and biological activity which make this material is currently studied in various applications, including tissue engineering. There are different methods to modify the morphology of CS. Most use chemical crosslinking agents, however, those methods have disadvantages such as low polymer degradability and unwanted side effects. The objective of this research was to obtain CS spheres through the physical crosslinking of commercial CS without using crosslinking agents through a simple coacervation method. A central composite experimental design was used to optimize the synthesis of the CS spheres and by the response surface methodology it was possible to obtain CS spheres with the smallest diameter and the most regular morphology. With the optimal formulation (CS solution 1.8% (w/v), acetic acid (AAC) solution 1% (w/v), sodium hydroxide (NaOH) solution 13% (w/v), relative humidity of (10%) and needle diameter of 0.6 mm), a final sphere diameter of 1 mm was obtained. Spheres were characterized by physical, chemical, thermal, and biological properties in simulated body fluid (SBF). The results obtained allowed us to understand the effect of the studied variables on the spheres’ diameter. An optimized condition facilitated the change in the morphology of the CS while maintaining its desirable properties for use in tissue engineering. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Biominetics | spa |
dc.title | Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres | spa |
dcterms.bibliographicCitation | 1. Ahsan, S.M.; Thomas, M.; Reddy, K.K.; Sooraparaju, S.G.; Asthana, A.; Bhatnagar, I. Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Biol. Macromol. 2018, 110, 97–109. | spa |
dcterms.bibliographicCitation | 2. Logithkumar, R.; Keshavnarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 2016, 151, 172–188 | spa |
dcterms.bibliographicCitation | 3. Jose, S.; Fangueiro, J.F.; Smitha, J.; Cinu, T.A.; Chacko, A.J.; Premaletha, K.; Souto, E.B. Predictive modeling of insulin release profile from crosslinked chitosan microspheres. Eur. J. Med. Chem. 2013, 60, 249–253. | spa |
dcterms.bibliographicCitation | 4. Saranya, T.S.; Rajan, V.K.; Biswas, R.; Jayakumar, R.; Sathianarayanan, S. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. Int. J. Biol. Macromol. 2018, 110, 227–233. | spa |
dcterms.bibliographicCitation | 5. Zhong, R.; Zhong, Q.; Huo, M.; Yang, B.; Li, H. Preparation of biocompatible nano-ZnO/chitosan microspheres with multi-functions of antibacterial, UV-shielding and dye photodegradation. Int. J. Biol. Macromol. 2020, 146, 939–945 | spa |
dcterms.bibliographicCitation | 6. Shu, X.; Zhu, K. Controlled drug release properties of ionically crosslinked chitosan beads: The influence of anion structure. Eur. J. Pharm. Biopharm. 2002, 54, 235–243 | spa |
dcterms.bibliographicCitation | 7. Kucharska, M.; Walenko, K.; Butruk, B.; Brynk, T.; Heljak, M.; Ciach, T. Fabrication and characterization of chitosan microspheres agglomerated scaffolds for bone tissue engineering. Mater. Lett. 2010, 64, 1059–1062. | spa |
dcterms.bibliographicCitation | 8. Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 2015, 33, 362–369. | spa |
dcterms.bibliographicCitation | 9. Wegrzynowska-drzymalska, K.; Grebicka, P.; Mlynarczyk, D.T. Crosslinking of Chitosan with Dialdehyde Chitosan as a New Approach for Biomedical Applications. Materials 2020, 13, 3413 | spa |
dcterms.bibliographicCitation | 10. Münster, L.; Capáková, Z.; Fišera, M.; Kuˇritka, I.; Vícha, J. Biocompatible dialdehyde cellulose/poly(vinyl alcohol) hydrogels with tunable properties. Carbohydr. Polym. 2019, 218, 333–342 | spa |
dcterms.bibliographicCitation | 11. Luo, K.; Yang, Y.; Shao, Z. Physically Crosslinked Biocompatible Silk-Fibroin-Based Hydrogels with High Mechanical Performance. Adv. Funct. Mater. 2016, 26, 872–880 | spa |
dcterms.bibliographicCitation | 12. Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm. 2019, 87, 20. | spa |
dcterms.bibliographicCitation | 13. Li, J.; Wu, X.; Wu, Y.; Tang, Z.; Sun, X.; Pan, M.; Chen, Y.; Li, J.; Xiao, R.; Wang, Z.; et al. Porous chitosan microspheres for application as quick in vitro and in vivo hemostat. Mater. Sci. Eng. C 2017, 77, 411–419. | spa |
dcterms.bibliographicCitation | 14. Meng, D.; Dong, L.; Wen, Y.; Xie, Q. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Mater. Sci. Eng. C 2015, 47, 266–272 | spa |
dcterms.bibliographicCitation | 15. Abdel-Fattah, W.I.; Jiang, T.; El-Bassyouni, G.E.T.; Laurencin, C.T. Synthesis, characterization of chitosans and fabrication of sintered chitosan microsphere matrices for bone tissue engineering. Acta Biomater. 2007, 3, 503–514 | spa |
dcterms.bibliographicCitation | 16. Zamora Lagos, S.I.; Murillo Salas, J.; Valencia Zapata, M.E.; Mina Hernandez, J.H.; Valencia, C.H.; Rojo, L.; Grande Tovar, C.D. Influence of the chitosan morphology on the properties of acrylic cements and their biocompatibility. RSC Adv. 2020, 10, 31156–31164 | spa |
dcterms.bibliographicCitation | 17. Ohan, M.P.; Weadock, K.S.; Dunn, M.G. Synergistic effects of glucose and ultraviolet irradiation on the physical properties of collagen. J. Biomed. Mater. Res. 2002, 60, 384–391 | spa |
dcterms.bibliographicCitation | 18. Becker, T.; Schlaak, M.; Strasdeit, H. Adsorption of nickel(II), zinc(II) and cadmium(II) by new chitosan derivatives. React. Funct. Polym. 2000, 44, 289–298 | spa |
dcterms.bibliographicCitation | 19. Lavertu, M.; Xia, Z.; Serreqi, A.N.; Berrada, M.; Rodrigues, A.; Wang, D.; Buschmann, M.D.; Gupta, A. A validated1H NMR method for the determination of the degree of deacetylation of chitosan. J. Pharm. Biomed. Anal. 2003, 32, 1149–1158 | spa |
dcterms.bibliographicCitation | 20. Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915 | spa |
dcterms.bibliographicCitation | 21. Navia Porras, D.P.; Gordillo Suárez,M.; Hernández Umaña, J.; Poveda Perdomo, L.G. Optimization of Physical, Optical and Barrier Properties of Films Made from Cassava Starch and Rosemary Oil. J. Polym. Environ. 2019, 27, 127–140 | spa |
dcterms.bibliographicCitation | 22. Bhattarai, N.; Ramay, H.R.; Gunn, J.; Matsen, F.A.; Zhang, M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release 2005, 103, 609–624 | spa |
dcterms.bibliographicCitation | 23. Tavares, L.; Zapata Noreña, C.P. Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocoll. 2019, 89, 360–369 | spa |
dcterms.bibliographicCitation | 24. Tang, W.; Wang, C.; Chen, D. Kinetic studies on the pyrolysis of chitin and chitosan. Polym. Degrad. Stab. 2005, 87, 389–394 | spa |
dcterms.bibliographicCitation | 25. Tavares, L.; Esparza Flores, E.E.; Rodrigues, R.C.; Hertz, P.F.; Noreña, C.P.Z. Effect of deacetylation degree of chitosan on rheological properties and physical chemical characteristics of genipin-crosslinked chitosan beads. Food Hydrocoll. 2020, 106, 105876 | spa |
dcterms.bibliographicCitation | 26. Sun, C.C.; Chou, S.F.; Lai, J.Y.; Cho, C.H.; Lee, C.H. Dependence of corneal keratocyte adhesion, spreading, and integrin β1 expression on deacetylated chitosan coating. Mater. Sci. Eng. C 2016, 63, 222–230. | spa |
dcterms.bibliographicCitation | 27. Colina, M.; Ayala, A.; Rincón, D.; Molina, J.; Medina, J.; Ynciarte, R.; Vargas, J.; Montilla, B. Evaluación de los procesos para la obtención química de quitina y quitosano a partir de desechos de cangejos. escala piloto e industrial. Rev. Iberoam. Polímeros 2014, 15, 21–43. | spa |
dcterms.bibliographicCitation | 28. Ways, T.M.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 2018, 10, 267. | spa |
dcterms.bibliographicCitation | 29. Kim, S. Competitive Biological Activities of Chitosan and Its Derivatives: Antimicrobial, Antioxidant, Anticancer, and Anti-Inflammatory Activities. Int. J. Polym. Sci. 2018, 2018, 1708172. | spa |
dcterms.bibliographicCitation | 30. Gupta, K.C.; Jabrail, F.H. Effects of degree of deacetylation and crosslinking on physical characteristics, swelling and release behavior of chitosan microspheres. Carbohydr. Polym. 2006, 66, 43–54. | spa |
dcterms.bibliographicCitation | 31. Jayakumar, R.; Prabaharan, M.; Muzzarelli, R.A. Chitosan for Biomaterials II; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 3-540-26112-5. | spa |
dcterms.bibliographicCitation | 32. Dong, Y.; Ruan, Y.; Wang, H.; Zhao, Y.; Bi, D. Studies on glass transition temperature of chitosan with four techniques. J. Appl. Polym. Sci. 2004, 93, 1553–1558 | spa |
dcterms.bibliographicCitation | 33. Guinesi, L.S.; Cavalheiro, É.T.G. The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim. Acta 2006, 444, 128–133 | spa |
dcterms.bibliographicCitation | 34. Moussout, H.; Ahlafi, H.; Aazza, M.; Amechrouq, A. Al2O3 /chitosan nanocomposite: Preparation, characterization and kinetic study of its thermal degradation. Thermochim. Acta 2018, 668, 169–177 | spa |
dcterms.bibliographicCitation | 35. Domalik-Pyzik, P.; Chłopek, J.; Pielichowska, K. Chitosan-Based Hydrogels: Preparation, Properties, and Applications; Springer: Cham, Switzerland, 2018; pp. 1–29 | spa |
dcterms.bibliographicCitation | 36. Gámiz-González, M.A.; Correia, D.M.; Lanceros-Mendez, S.; Sencadas, V.; Gómez Ribelles, J.L.; Vidaurre, A. Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydr. Polym. 2017, 167, 52–58. | spa |
dcterms.bibliographicCitation | 37. Nam, Y.S.; Park, W.H.; Ihm, D.; Hudson, S.M. Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydr. Polym. 2010, 80, 291–295. | spa |
dcterms.bibliographicCitation | 38. Kittur, F.S.; Harish Prashanth, K.V.; Udaya Sankar, K.; Tharanathan, R.N. Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr. Polym. 2002, 49, 185–193 | spa |
dcterms.bibliographicCitation | 39. Takara, E.A.; Marchese, J.; Ochoa, N.A. NaOH treatment of chitosan films: Impact on macromolecular structure and film properties. Carbohydr. Polym. 2015, 132, 25–30 | spa |
dcterms.bibliographicCitation | 40. Ibrahim, K.A.; El-Eswed, B.I.; Abu-Sbeih, K.A.; Arafat, T.A.; Al Omari, M.M.H.; Darras, F.H.; Badwan, A.A. Preparation of chito-oligomers by hydrolysis of chitosan in the presence of zeolite as adsorbent. Mar. Drugs 2016, 14, 43 | spa |
dcterms.bibliographicCitation | 41. ASTM International. ASTM F1635-16, Standard Test Method for in vitro Degradation Testing of Hydrolytically Degradable; ASTM International: West Conshohocken, PA, USA, 2018; pp. 1–7 | spa |
dcterms.bibliographicCitation | 42. Wu, J.; Ma, G.H.; Zhao, X.; Wang, Y.Q. Biomedical application of soft nano-/microparticles. In Nano/Micro Science and Technology in Biorheology: Principles, Methods, and Applications; Springer: Tokyo, Japan, 2015; pp. 261–294. ISBN 9784431548867. | spa |
dcterms.bibliographicCitation | 43. Badawy, M.E.I.; Taktak, N.E.M.; Awad, O.M.; Elfiki, S.A.; El-Ela, N.E.A. Preparation and Characterization of Biopolymers Chitosan/Alginate/Gelatin Gel Spheres Crosslinked by Glutaraldehyde. J. Macromol. Sci. Part B 2017, 56, 359–372 | spa |
dcterms.bibliographicCitation | 44. Hezma, A.M.; Elkhooly, T.A.; El-Bahy, G.S. Fabrication and characterization of bioactive chitosan microspheres incorporated with mesoporous silica nanoparticles for biomedical applications. J. Porous Mater. 2020, 27, 555–562 | spa |
dcterms.bibliographicCitation | 45. Azizian, S.; Hadjizadeh, A.; Niknejad, H. Chitosan-gelatin porous scaffold incorporated with Chitosan nanoparticles for growth factor delivery in tissue engineering. Carbohydr. Polym. 2018, 202, 315–322. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/biomimetics5040063 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | chitosan; spheres; morphology; physical; crosslinking; biomedical; application | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Química | spa |
dc.publisher.sede | Sede Norte | spa |