Mostrar el registro sencillo del ítem

dc.contributor.authorDuarte Forero, Jorge
dc.contributor.otherValencia Ochoa, Guillermo
dc.contributor.otherPalacios Alvarado, Wlamyr
dc.date.accessioned2022-11-15T20:50:35Z
dc.date.available2022-11-15T20:50:35Z
dc.date.issued2020-10-30
dc.date.submitted2020-09-22
dc.identifier.urihttps://hdl.handle.net/20.500.12834/895
dc.description.abstractThe present study aims to analyze the secondary movement of the piston considering the deformations present in the piston skirt, the hydrodynamic lubrication, and the effects of the clearances in the connecting rod bearings. The analysis of the piston movement is performed by developing a mathematical model, which was used to evaluate the dynamic characteristics of the piston movement, the slap force on the piston skirt, the effect of the secondary piston movement on the connecting rod, and the influence of clearances in the connecting rod bearings and in the piston. For the study, the geometric of the crankshaft-connecting rod–piston system of a single-cylinder diesel engine is taken as a reference. The deformation model of the piston was carried out by means of a symmetric finite element model (FEM), which was integrated into the mathematical model of the piston. MATLAB® software (The MathWorks Inc., Natick, MA, USA) is used for the development of model simulations. The obtained results show that during the combustion cycle, there are six changes of direction in the secondary movement of the piston with lateral and angular velocities that can reach a magnitude of 0.13 m/s and 4 rad/s. The lateral and angular movement of the piston during its travel causes the appearance of impacts on the piston skirt with the cylinder liner, which produces an increase of approximately 500 N in the hydrodynamic forces in the connecting rod bearings. The force analysis shows that the range of the maximum magnitudes of these forces is between 1900 N and 3480 N. The increase in clearance between the cylinder liner and the piston skirt (Cpc) causes a greater lateral displacement and an increase in the angle of inclination of the piston. Analysis of the change in connecting rod bearing clearance shows that there are critical values in relation to clearance Cpc. The model presented allows us to analyze the different characteristics of the secondary movement of the piston, which involve the interaction between the piston skirt and the cylinder liner. Additionally, the influence of this movement on the connecting rod bearings is considered. The foregoing can be used as an analysis tool for the study of designs and/or modifications in the engine in such a way that greater durability of the components, reductions in acoustic emissions, and reduction in friction losses are achieved.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceLubricantsspa
dc.titleStudy of the Piston Secondary Movement on the Tribological Performance of a Single Cylinder Low-Displacement Diesel Enginespa
dcterms.bibliographicCitation1. Han, D.-C.; Lee, J.-S. Analysis of the piston ring lubrication with a new boundary condition. Tribol. Int. 1998, 31, 753–760spa
dcterms.bibliographicCitation2. Amador, G.; Forero, J.D.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V.; Orozco, W. Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number. J. Energy Resour. Technol. 2017, 139, 042205spa
dcterms.bibliographicCitation3. Consuegra, F.; Bula, A.; Guillín, W.; Sánchez, J.; Duarte Forero, J. Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines. Energies 2019, 12, 1437spa
dcterms.bibliographicCitation4. Duarte Forero, J.; Valencia Ochoa, G.; Piero Rojas, J. Effect of the Geometric Profile of Top Ring on the Tribological Characteristics of a Low-Displacement Diesel Engine. Lubricants 2020, 8, 83spa
dcterms.bibliographicCitation5. Wong, V.W.; Tian, T.; Lang, H.; Ryan, J.P.; Sekiya, Y.; Kobayashi, Y.; Aoyama, S. A Numerical Model of Piston Secondary Motion and Piston Slap in Partially Flooded Elastohydrodynamic Skirt Lubrication. In Proceedings of the SAE Technical Papers; SAE: Warrendale, PA, USA, 1994spa
dcterms.bibliographicCitation6. Valencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Thermo-economic assessment of a gas microturbine-absorption chiller trigeneration system under different compressor inlet air temperatures. Energies 2020, 12, 4643spa
dcterms.bibliographicCitation7. Ochoa, G.V.; Isaza-Roldan, C.; Duarte Forero, J. Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential. Energies 2020, 13, 1317spa
dcterms.bibliographicCitation8. Valencia Ochoa, G.; Duarte Forero, J.; Rojas, J.P. A comparative energy and exergy optimization of a supercritical-CO2 Brayton cycle and Organic Rankine Cycle combined system using swarm intelligence algorithms. Heliyon 2020, 6, e04136.spa
dcterms.bibliographicCitation9. Ramírez, R.; Gutiérrez, A.S.; Cabello Eras, J.J.; Valencia, K.; Hernández, B.; Duarte Forero, J. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J. Clean. Prod. 2019, 241, 118412.spa
dcterms.bibliographicCitation10. Valencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Combustion and Performance Study of Low-Displacement Compression Ignition Engines Operating with Diesel–Biodiesel Blends. Appl. Sci. 2020, 10, 907spa
dcterms.bibliographicCitation11. Kimura, T.; Takahashi, K.; Sugiyama, S. Development of a Piston Secondary Motion Analysis Program with Elastically Deformable Piston Skirt. In Proceedings of the SAE Technical Papers; SAE: Warrendale, PA, USA, 1999spa
dcterms.bibliographicCitation12. Koizumi, T.; Tsujiuchi, N.; Okamura, M.; Kubomoto, I.; Ishida, E. Reduction of piston slap excitation with optimization of piston profile. In Proceedings of the SAE Technical Papers; SAE: Warrendale, PA, USA, 2000spa
dcterms.bibliographicCitation13. Tsujiuchi, N.; Koizumi, T.; Hamada, K.; Okamura, M.; Tsukijima, H. Optimization of Profile fo r Reduction of Piston Slap Excitation. In Proceedings of the SAE Technical Papers; SAE: Warrendale, PA, USA, 2004.spa
dcterms.bibliographicCitation14. Murakami, H.; Nakanishi, N.; Ono, N.; Kawano, T. New Three-dimensional Piston Secondary Motion Analysis Method Coupling Structure Analysis and Multi Body Dynamics Analysis. SAE Int. J. Engines 2011, 5, 42–50spa
dcterms.bibliographicCitation15. Diaz, G.A.; Forero, J.D.; Garcia, J.; Rincon, A.; Fontalvo, A.; Bula, A.; Padilla, R.V. Maximum Power From Fluid Flow by Applying the First and Second Laws of Thermodynamics. J. Energy Resour. Technol. 2017, 139, 032903spa
dcterms.bibliographicCitation16. Mejía, A.; Leiva, M.; Rincón-Montenegro, A.; Gonzalez-Quiroga, A.; Duarte-Forero, J. Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends. Case Stud. Therm. Eng. 2020, 19, 100613spa
dcterms.bibliographicCitation17. Valencia Ochoa, G.; Cárdenas Gutierrez, J.; Duarte Forero, J. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine. Resources 2020, 9, 2spa
dcterms.bibliographicCitation18. Espinel Blanco, E.; Valencia Ochoa, G.; Duarte Forero, J. Thermodynamic, Exergy and Environmental Impact Assessment of S-CO2 Brayton Cycle Coupled with ORC as Bottoming Cycle. Energies 2020, 13, 2259.spa
dcterms.bibliographicCitation19. Gutierrez, J.C.; Valencia Ochoa, G.; Duarte-Forero, J. Regenerative Organic Rankine Cycle as Bottoming Cycle of an Industrial Gas Engine: Traditional and Advanced Exergetic Analysis. Appl. Sci. 2020, 10, 4411.spa
dcterms.bibliographicCitation20. Dolatabadi, N.; Theodossiades, S.; Rothberg, S.J. Passive Control of Piston Secondary Motion Using Nonlinear Energy Absorbers. J. Vib. Acoust. 2017, 139spa
dcterms.bibliographicCitation21. Lu, Y.; Li, S.; Wang, P.; Liu, C.; Zhang, Y.; Müller, N. The Analysis of Secondary Motion and Lubrication Performance of Piston considering the Piston Skirt Profile. Shock Vib. 2018, 2018, 3240469spa
dcterms.bibliographicCitation22. Tan, Y.-C.; Ripin, Z.M. Analysis of piston secondary motion. J. Sound Vib. 2013, 332, 5162–5176spa
dcterms.bibliographicCitation23. Valencia Ochoa, G.; Piero Rojas, J.; Duarte Forero, J. Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine. Energies 2020, 13, 267spa
dcterms.bibliographicCitation24. Tan, Y.-C.; Ripin, Z.M. Technique to determine instantaneous piston skirt friction during piston slap. Tribol. Int. 2014, 74, 145–153spa
dcterms.bibliographicCitation25. Meng, F.; Wang, X.; Li, T.; Chen, Y. Influence of cylinder liner vibration on lateral motion and tribological behaviors for piston in internal combustion engine. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2015, 229, 151–167spa
dcterms.bibliographicCitation26. Narayan, S. Effects of Various Parameters on Piston Secondary Motion. In Proceedings of the SAE Technical Papers; SAE: Warrendale, PA, USA, 2015.spa
dcterms.bibliographicCitation27. Obert, P.; Müller, T.; Füßer, H.-J.; Bartel, D. The influence of oil supply and cylinder liner temperature on friction, wear and scuffing behavior of piston ring cylinder liner contacts—A new model test. Tribol. Int. 2016, 94, 306–314spa
dcterms.bibliographicCitation28. Mazouzi, R.; Kellaci, A.; Karas, A. Effects of piston design parameters on skirt-liner dynamic behavior. Ind. Lubr. Tribol. 2016, 68, 250–258spa
dcterms.bibliographicCitation29. Fang, C.; Meng, X.; Xie, Y. A piston tribodynamic model with deterministic consideration of skirt surface grooves. Tribol. Int. 2017, 110, 232–251spa
dcterms.bibliographicCitation30. Meng, F.M.; Zhang, Y.Y.; Hu, Y.Z.; Wang, H. Thermo-elasto-hydrodynamic lubrication analysis of piston skirt considering oil film inertia effect. Tribol. Int. 2007, 40, 1089–1099.spa
dcterms.bibliographicCitation31. Zhang, Z.; Xie, Y.; Zhang, X.; Meng, X. Analysis of piston secondary motion considering the variation in the system inertia. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2009, 223, 549–563spa
dcterms.bibliographicCitation32. Meng, X.; Xie, Y. A new numerical analysis for piston skirt–liner system lubrication considering the effects of connecting rod inertia. Tribol. Int. 2012, 47, 235–243.spa
dcterms.bibliographicCitation33. Meng, X.; Ning, L.; Xie, Y.; Wong, V.W. Effects of the connecting-rod-related design parameters on the piston dynamics and the skirt–liner lubrication. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 227, 885–898.spa
dcterms.bibliographicCitation34. Zhu, J.; Zhu, H.; Fan, S.; Xue, L.; Li, Y. A study on the influence of oil film lubrication to the strength of engine connecting rod components. Eng. Fail. Anal. 2016, 63, 94–105spa
dcterms.bibliographicCitation35. Pelosi, M.; Ivantysynova, M. Heat transfer and thermal elastic deformation analysis on the piston/cylinder interface of axial piston machines. J. Tribol. 2012, 134, 041101spa
dcterms.bibliographicCitation36. Ning, L.; Meng, X.; Xie, Y. Incorporation of deformation in a lubrication analysis for automotive piston skirt–liner system. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2013, 227, 654–670.spa
dcterms.bibliographicCitation37. Flores, P. A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 2010, 61, 633–653spa
dcterms.bibliographicCitation38. Daniel, G.B.; Cavalca, K.L. Analysis of the dynamics of a slider–crank mechanism with hydrodynamic lubrication in the connecting rod–slider joint clearance. Mech. Mach. Theory 2011, 46, 1434–1452spa
dcterms.bibliographicCitation39. Flores, P.; Ambrósio, J.; Claro, J.C.P.; Lankarani, H.M. Influence of the contact—Impact force model on the dynamic response of multi-body systems. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2006, 220, 21–34.spa
dcterms.bibliographicCitation40. Daniel, G.B.; Machado, T.H.; Cavalca, K.L. Investigation on the influence of the cavitation boundaries on the dynamic behavior of planar mechanical systems with hydrodynamic bearings. Mech. Mach. Theory 2016, 99, 19–36spa
dcterms.bibliographicCitation41. Patir, N.; Cheng, H.S. Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces. J. Lubr. Technol. 1979, 101, 220–229spa
dcterms.bibliographicCitation42. Patir, N.; Cheng, H.S. An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication. J. Lubr. Technol. 1978, 100, 12–17spa
dcterms.bibliographicCitation43. Greenwood, J.A.; Tripp, J.H. The contact of two nominally flat rough surfaces. Proc. Inst. Mech. Eng. 1970, 185, 625–633spa
dcterms.bibliographicCitation44. Hays, D.F. Theory of hydrodynamic lubrication. J. Frankl. Inst. 1961, 272, 521–522spa
dcterms.bibliographicCitation45. DuBois, G.B.; Ocvirk, F.W. Analytical Derivation and Experimental Evaluation of Short-Bearing Approximation for Full Journal Bearings; National Advisory Committee for Aeronautics: Kitty Hawk, NC, USA, 1953.spa
dcterms.bibliographicCitation46. Zhu, D.; Hu, Y.-Z.; Cheng, H.S.; Arai, T.; Hamai, K. A Numerical Analysis for Piston Skirts in Mixed Lubrication: Part II—Deformation Considerations. J. Tribol. 1993, 115, 125–133.spa
dcterms.bibliographicCitation47. Cantore, G.; Giacopini, M.; Rosi, R.; Strozzi, A.; Pelloni, P.; Forte, C.; Achiluzzi, M.; Bianchi, G.M.; Ceschini, L.; Morri, A. Validation of a combined CFD/FEM methodology for the evaluation of thermal load acting on aluminum alloy pistons through hardness measurements in internal combustion engines. Metall. Sci. Tecnol. 2011, 29, 16–25.spa
dcterms.bibliographicCitation48. McFadden, P.D.; Turnbull, S.R. Dynamic analysis of piston secondary motion in an internal combustion engine under non-lubricated and fully flooded lubricated conditions. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 2575–2585.spa
dcterms.bibliographicCitation49. Zavos, A.; Nikolakopoulos, P.G. Measurement of friction and noise from piston assembly of a single-cylinder motorbike engine at realistic speeds. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 1715–1735spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/lubricants8110097
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsclearances; deformation effects; diesel engine; piston secondary motion; tribological performancespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por