Mostrar el registro sencillo del ítem

dc.contributor.authorORTEGA, MARÍA JOSÉ
dc.contributor.otherRAMÍREZ, WILLIAM
dc.contributor.otherURIELES, ALEJANDRO
dc.date.accessioned2022-11-15T20:49:38Z
dc.date.available2022-11-15T20:49:38Z
dc.date.issued2019-01-25
dc.date.submitted2018-06-06
dc.identifier.urihttps://hdl.handle.net/20.500.12834/890
dc.description.abstractIn this paper, we introduce a new extension of the generalized ApostolFrobenius-Euler polynomials H [m−1,α] n (x; c, a; λ; u). We give some algebraic and differential properties, as well as, relationships between this polynomials class with other polynomials and numbers. We also, introduce the generalized ApostolFrobenius-Euler polynomials matrix U [m−1,α] (x; c, a; λ; u) and the new generalized Apostol-Frobenius-Euler matrix U [m−1,α] (c, a; λ; u), we deduce a product formula for U [m−1,α] (x; c, a; λ; u) and provide some factorizations of the Apostol-Frobenius-Euler polynomial matrix U [m−1,α] (x; c, a; λ; u), which involving the generalized Pascal matrix.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceUniversidad de la costaspa
dc.titleNEW GENERALIZED APOSTOL-FROBENIUS-EULER POLYNOMIALS AND THEIR MATRIX APPROACHspa
dcterms.bibliographicCitation1] R. Askey, Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, SIAM. J. W. Arrowsmith Ltd., Bristol, England, 1975.spa
dcterms.bibliographicCitation[2] L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 32 (1959), 247–260.spa
dcterms.bibliographicCitation[3] G. Call and D. J. Velleman, Pascal’s matrices, Amer. Math. Monthly 100 (1993), 372–376.spa
dcterms.bibliographicCitation[4] L. Castilla, W. Ramírez and A. Urieles, An extended generalized q-extensions for the Apostol type polynomials, Abstr. Appl. Anal. 2018 (2018), 1–13.spa
dcterms.bibliographicCitation[5] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel, Dordrecht, Boston, 1974.spa
dcterms.bibliographicCitation[6] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, New York, 1994spa
dcterms.bibliographicCitation[7] L. Hernández, Y. Quintana and A. Urieles, About extensions of generalized Apostol-type polynomials, Results Math. 68 (2015), 203–225spa
dcterms.bibliographicCitation[8] B. Kurt and Y. Simsek, On the generalized Apostol-type Frobenius-Euler polynomials, Adv. Difference Equ. 2013 (2013), 1–9.spa
dcterms.bibliographicCitation[9] Q. M. Luo, Extensions of the Genocchi polynomials and its Fourier expansions and integral representations, Osaka J. Math. 48 (2011), 291–309.spa
dcterms.bibliographicCitation[10] Q. M. Luo and H. M. Srivastava, Some relationships between the Apostol-Bernoulli and ApostolEuler polynomials, Comput. Math. Appl. 51 (2006), 631–642.spa
dcterms.bibliographicCitation[11] P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math. 3 (2003), 155–163spa
dcterms.bibliographicCitation[12] Y. Quintana, W. Ramírez and A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo 55 (2018), 23–40.spa
dcterms.bibliographicCitation13] Y. Quintana, W. Ramírez and A. Urieles, Generalized Apostol-type polynomial matrix and its algebraic properties. Math. Repor. 21(2) (2019).spa
dcterms.bibliographicCitation[14] Z. Zhang and J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math. 154 (2006), 1622–1632.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.46793/KgJMat2103.393O
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywords. Generalized Apostol-type polynomials, Apostol-Frobennius-Euler polynomials, Apostol-Bernoulli polynomials of higher order, Apostol-Genocchi polynomials of higher order, Stirling numbers of second kind, generalized Pascal matrixspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por