Mostrar el registro sencillo del ítem

dc.contributor.authorCastro, Jorge Iván
dc.contributor.otherNavia Porras, Diana Paola
dc.contributor.otherArbeláez Cortés, Jaime Andrés
dc.contributor.otherMina Hernández, José Herminsul
dc.contributor.otherGrande Tovar, Carlos David
dc.date.accessioned2022-11-15T20:45:39Z
dc.date.available2022-11-15T20:45:39Z
dc.date.issued2022-03-31
dc.date.submitted2022-03-10
dc.identifier.citationCastro, J. I., Navia-Porras, D. P., Arbeláez Cortés, J. A., Mina Hernández, J. H., & Grande-Tovar, C. D. (2022). Synthesis, Characterization, and Optimization Studies of Starch/Chicken Gelatin Composites for Food-Packaging Applications. Molecules (Basel, Switzerland), 27(7), 2264. https://doi.org/10.3390/molecules27072264spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/871
dc.description.abstractThe indiscriminate use of plastic in food packaging contributes significantly to environmental pollution, promoting the search for more eco-friendly alternatives for the food industry. This work studied five formulations (T1–T5) of biodegradable cassava starch/gelatin films. The results showed the presence of the starch/gelatin functional groups by FT-IR spectroscopy. Differential scanning calorimetry (DSC) showed a thermal reinforcement after increasing the amount of gelatin in the formulations, which increased the crystallization temperature (Tc) from 190 C for the starch-only film (T1) to 206 C for the film with 50/50 starch/gelatin (T3). It also exhibited a homogeneous surface morphology, as evidenced by scanning electron microscopy (SEM). However, an excess of gelatin showed low compatibility with starch in the 25/75 starch/gelatin film (T4), evidenced by the low Tc definition and very rough and fractured surface morphology. Increasing gelatin ratio also significantly increased the strain (from 2.9 0.5% for T1 to 285.1 10.0% for T5) while decreasing the tensile strength (from 14.6 0.5 MPa for T1 to 1.5 0.3 MPa for T5). Water vapor permeability (WVP) increased, and water solubility (WS) also decreased with gelatin mass rising in the composites. On the other hand, opacity did not vary significantly due to the films’ cassava starch and gelatin ratio. Finally, optimizing the mechanical and water barrier properties resulted in a mass ratio of 53/47 cassava starch/gelatin as the most appropriate for their application in food packaging, indicating their usefulness in the food-packaging industry.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMoleculesspa
dc.titleSynthesis, Characterization, and Optimization Studies of Starch/Chicken Gelatin Composites for FoodPackaging Applicationsspa
dcterms.bibliographicCitationWalker, T.R.; McGuinty, E.; Charlebois, S.; Music, J. Single-Use Plastic Packaging in the Canadian Food Industry: Consumer Behavior and Perceptions. Humanit. Soc. Sci. Commun. 2021, 8, 80. [CrossRef]spa
dcterms.bibliographicCitationWang, Y.-L.; Lee, Y.-H.; Chiu, I.-J.; Lin, Y.-F.; Chiu, H.-W. Potent Impact of Plastic Nanomaterials and Micromaterials on the Food Chain and Human Health. Int. J. Mol. Sci. 2020, 21, 1727. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 2018, 8, 4666. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationBasiak, E. Food industry: Use of plastics of the twenty-first century. In Food Technology; Apple Academic Press: Palm Bay, FL, USA, 2017; pp. 53–62. ISBN 1315365650.spa
dcterms.bibliographicCitationAlves, V.D.; Ferreira, A.R.; Costa, N.; Freitas, F.; Reis, M.A.M.; Coelhoso, I.M. Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr. Polym. 2011, 83, 1582–1590. [CrossRef]spa
dcterms.bibliographicCitationReddy, N.; Chen, L.; Yang, Y. Biothermoplastics from hydrolyzed and citric acid crosslinked chicken feathers. Mater. Sci. Eng. C 2013, 33, 1203–1208. [CrossRef]spa
dcterms.bibliographicCitationGonzález, A.; Igarzabal, C.I.A. Soy protein–Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocoll. 2013, 33, 289–296. [CrossRef]spa
dcterms.bibliographicCitationCercel, F.; Stroiu, M.; Alexe, P.; Iani¸tchi, D. Characterization of myofibrillar chicken breast proteins for obtain protein films and biodegradable coatings generation. Agric. Agric. Sci. Procedia 2015, 6, 197–205. [CrossRef]spa
dcterms.bibliographicCitationSalgado, P.R.; Ortiz, S.E.M.; Petruccelli, S.; Mauri, A.N. Biodegradable sunflower protein films naturally activated with antioxidant compounds. Food Hydrocoll. 2010, 24, 525–533. [CrossRef]spa
dcterms.bibliographicCitationTapia-Blácido, D.; Sobral, P.J.; Menegalli, F.C. Development and characterization of biofilms based on Amaranth flour (Amaranthus caudatus). J. Food Eng. 2005, 67, 215–223. [CrossRef]spa
dcterms.bibliographicCitationMendes, J.F.; Paschoalin, R.T.; Carmona, V.B.; Neto, A.R.S.; Marques, A.C.P.; Marconcini, J.M.; Mattoso, L.H.C.; Medeiros, E.S.; Oliveira, J.E. Biodegradable Polymer Blends Based on Corn Starch and Thermoplastic Chitosan Processed by Extrusion. Carbohydr. Polym. 2016, 137, 452–458. [CrossRef]spa
dcterms.bibliographicCitationSantayanon, R.; Wootthikanokkhan, J. Modification of cassava starch by using propionic anhydride and properties of the starch-blended polyester polyurethane. Carbohydr. Polym. 2003, 51, 17–24. [CrossRef]spa
dcterms.bibliographicCitationSouza, A.C.; Benze, R.; Ferrão, E.S.; Ditchfield, C.; Coelho, A.C.V.; Tadini, C.C. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT—Food Sci. Technol. 2012, 46, 110–117. [CrossRef]spa
dcterms.bibliographicCitationBertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [CrossRef]spa
dcterms.bibliographicCitationFlores, S.; Famá, L.; Rojas, A.M.; Goyanes, S.; Gerschenson, L. Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate. Food Res. Int. 2007, 40, 257–265. [CrossRef]spa
dcterms.bibliographicCitationBangyekan, C.; Aht-Ong, D.; Srikulkit, K. Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydr. Polym. 2006, 63, 61–71. [CrossRef]spa
dcterms.bibliographicCitationParra, D.F.; Tadini, C.C.; Ponce, P.; Lugão, A.B. Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydr. Polym. 2004, 58, 475–481. [CrossRef]spa
dcterms.bibliographicCitationVanin, F.M.; Sobral, P.J.A.; Menegalli, F.C.; Carvalho, R.A.; Habitante, A. Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll. 2005, 19, 899–907. [CrossRef]spa
dcterms.bibliographicCitationLuo, Q.; Hossen, M.A.; Zeng, Y.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Gelatin-based composite films and their application in food packaging: A review. J. Food Eng. 2022, 313, 110762. [CrossRef]spa
dcterms.bibliographicCitationAhmad, T.; Ismail, A.; Ahmad, S.A.; Khalil, K.A.; Kumar, Y.; Adeyemi, K.D.; Sazili, A.Q. Recent advances on the role of process variables affecting gelatin yield and characteristics with special reference to enzymatic extraction: A review. Food Hydrocoll. 2017, 63, 85–96. [CrossRef]spa
dcterms.bibliographicCitationAhmad, M.; Hani, N.M.; Nirmal, N.P.; Fazial, F.F.; Mohtar, N.F.; Romli, S.R. Optical and thermo-mechanical properties of composite films based on fish gelatin/rice flour fabricated by casting technique. Prog. Org. Coatings 2015, 84, 115–127. [CrossRef]spa
dcterms.bibliographicCitationDuconseille, A.; Astruc, T.; Quintana, N.; Meersman, F.; Sante-Lhoutellier, V. Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocoll. 2015, 43, 360–376. [CrossRef]spa
dcterms.bibliographicCitationMohammadi, R.; Mohammadifar, M.A.; Rouhi, M.; Kariminejad, M.; Mortazavian, A.M.; Sadeghi, E.; Hasanvand, S. Physicomechanical and structural properties of eggshell membrane gelatin- chitosan blend edible films. Int. J. Biol. Macromol. 2018, 107, 406–412. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLi, K.; Jin, S.; Chen, H.; Li, J. Bioinspired interface engineering of gelatin/cellulose nanofibrils nanocomposites with high mechanical performance and antibacterial properties for active packaging. Compos. Part B Eng. 2019, 171, 222–234. [CrossRef]spa
dcterms.bibliographicCitationBoughriba, S.; Souissi, N.; Jridi, M.; Li, S.; Nasri, M. Thermal, mechanical and microstructural characterization and antioxidant potential of Rhinobatos cemiculus gelatin films supplemented by titanium dioxide doped silver nanoparticles. Food Hydrocoll. 2020, 103, 105695. [CrossRef]spa
dcterms.bibliographicCitationTongdeesoontorn,W.; Mauer, L.J.;Wongruong, S.; Rachtanapun, P.Water Vapour Permeability and Sorption Isotherms of Cassava Starch Based Films Blended with Gelatin and Carboxymethyl Cellulose. Asian J. Food Agro-Ind. 2009, 2, 501–514.spa
dcterms.bibliographicCitationVeiga-Santos, P.; Oliveira, L.M.; Cereda, M.P.; Scamparini, A.R.P. Sucrose and Inverted Sugar as Plasticizer. Effect on Cassava Starch–Gelatin Film Mechanical Properties, Hydrophilicity and Water Activity. Food Chem. 2007, 103, 255–262. [CrossRef]spa
dcterms.bibliographicCitationBiswal, D.R.; Singh, R.P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym. 2004, 57, 379–387. [CrossRef]spa
dcterms.bibliographicCitationVicentini, N.M.; Dupuy, N.; Leitzelman, M.; Cereda, M.P.; Sobral, P.J.A. Prediction of cassava starch edible film properties by chemometric analysis of infrared spectra. Spectrosc. Lett. 2005, 38, 749–767. [CrossRef]spa
dcterms.bibliographicCitationTongdeesoontorn, W.; Mauer, L.J.; Wongruong, S.; Sriburi, P.; Rachtanapun, P. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem. Cent. J. 2011, 5, 6. [CrossRef]spa
dcterms.bibliographicCitationHanani, Z.N.; Roos, Y.; Kerry, J. Fourier Transform Infrared (FTIR) spectroscopic analysis of biodegradable gelatin films immersed in water. In Proceedings of the 11th International Congress on Engineering and Food, ICEF11, Athens, Greece, 22–26 May 2011.spa
dcterms.bibliographicCitationAhmadi, A.; Ahmadi, P.; Ehsani, A. Development of an active packaging system containing zinc oxide nanoparticles for the extension of chicken fillet shelf life. Food Sci. Nutr. 2020, 8, 5461–5473. [CrossRef]spa
dcterms.bibliographicCitationCyras, V.P.;Manfredi, L.B.; Ton-That,M.-T.; Vázquez, A. Physical andMechanical Properties of Thermoplastic Starch/Montmorillonite Nanocomposite Films. Carbohydr. Polym. 2008, 73, 55–63. [CrossRef]spa
dcterms.bibliographicCitationMoreno, O.; Cárdenas, J.; Atarés, L.; Chiralt, A. Influence of Starch Oxidation on the Functionality of Starch-Gelatin Based Active Films. Carbohydr. Polym. 2017, 178, 147–158. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLee, J.-H.; Lee, J.; Song, K. Bin Development of a chicken feet protein film containing essential oils. Food Hydrocoll. 2015, 46, 208–215. [CrossRef]spa
dcterms.bibliographicCitationTarique, J.; Sapuan, S.M.; Khalina, A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci. Rep. 2021, 11, 13900. [CrossRef]spa
dcterms.bibliographicCitationMoreno, O.; Díaz, R.; Atarés, L.; Chiralt, A. Influence of the Processing Method and Antimicrobial Agents on Properties of Starch-gelatin Biodegradable Films. Polym. Int. 2016, 65, 905–914. [CrossRef]spa
dcterms.bibliographicCitationVerdonck, E.; Schaap, K.; Thomas, L.C. A discussion of the principles and applications of Modulated Temperature DSC (MTDSC). Int. J. Pharm. 1999, 192, 3–20. [CrossRef]spa
dcterms.bibliographicCitationDe Almeida, P.F. Análise Da Qualidade de Gelatina Obtida de Tarsos de Frango e Aspectos Envolvidos No Processo Produtivo; Uninove: São Paulo, Brazil, 2012.spa
dcterms.bibliographicCitationLoo, C.P.Y.; Sarbon, N.M. Chicken skin gelatin films with tapioca starch. Food Biosci. 2020, 35, 100589. [CrossRef]spa
dcterms.bibliographicCitationTongdeesoontorn,W.; Mauer, L.J.;Wongruong, S.; Sriburi, P.; Reungsang, A.; Rachtanapun, P. Antioxidant films from cassava starch/gelatin biocomposite fortified with quercetin and TBHQ and their applications in food models. Polymers 2021, 13, 1117. [CrossRef]spa
dcterms.bibliographicCitationSoo, P.Y.; Sarbon, N.M. Preparation and characterization of edible chicken skin gelatin film incorporated with rice flour. Food Packag. Shelf Life 2018, 15, 1–8. [CrossRef]spa
dcterms.bibliographicCitationSarbon, N.M.; Badii, F.; Howell, N.K. Preparation and characterisation of chicken skin gelatin as an alternative to mammalian gelatin. Food Hydrocoll. 2013, 30, 143–151. [CrossRef]spa
dcterms.bibliographicCitationWang, L.Z.; Liu, L.; Holmes, J.; Kerry, J.F.; Kerry, J.P. Assessment of film-forming potential and properties of protein and polysaccharide-based biopolymer films. Int. J. Food Sci. Technol. 2007, 42, 1128–1138. [CrossRef]spa
dcterms.bibliographicCitationTongdeesoontorn,W.; Mauer, L.J.;Wongruong, S.; Sriburi, P.; Rachtanapun, P. Mechanical and Physical Properties of Cassava Starch-Gelatin Composite Films. Int. J. Polym. Mater. 2012, 61, 778–792. [CrossRef]spa
dcterms.bibliographicCitationAl-Hassan, A.; Norziah, M. Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocoll. 2012, 26, 108–117. [CrossRef]spa
dcterms.bibliographicCitationFakhouri, F.M.; Martelli, S.M.; Bertan, L.C.; Yamashita, F.; Mei, L.H.I.; Queiroz, F.P.C. Edible films made from blends of manioc starch and gelatin–Influence of different types of plasticizer and different levels of macromolecules on their properties. Postharvest Biol. Technol. 2012, 49, 149–154. [CrossRef]spa
dcterms.bibliographicCitationAcosta, S.; Jiménez, A.; Cháfer, M.; González-Martínez, C.; Chiralt, A. Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocoll. 2015, 49, 135–143. [CrossRef]spa
dcterms.bibliographicCitationNajwa, I.S.N.A.; Guerrero, P.; de la Caba, K.; Hanani, Z.A.N. Physical and antioxidant properties of starch/gelatin films incorporated with Garcinia atroviridis leaves. Food Packag. Shelf Life 2020, 26, 100583. [CrossRef]spa
dcterms.bibliographicCitationFakhouri, F.M.; Costa, D.; Yamashita, F.; Martelli, S.M.; Jesus, R.C.; Alganer, K.; Collares-queiroz, F.P.; Innocentini-mei, L.H. Comparative study of processing methods for starch/gelatin films. Carbohydr. Polym. 2013, 95, 681–689. [CrossRef]spa
dcterms.bibliographicCitationZhang, Y.; Du, Z.; Xia, X.; Guo, Q.; Wu, H.; Yu, W. Evaluation of the migration of UV-ink photoinitiators from polyethylene food packaging by supercritical fluid chromatography combined with photodiode array detector and tandem mass spectrometry. Polym. Test. 2016, 53, 276–282. [CrossRef]spa
dcterms.bibliographicCitationKumar, R.; Goyal, G.G.M. Synthesis and functional properties of gelatin/CA–starch composite film: Excellent food packaging material. J. Food Sci. Technol. 2019, 56, 1954–1965. [CrossRef]spa
dcterms.bibliographicCitationKumar, R. Biodegradable composite films/coatings of modified corn starch/gelatin for shelf life improvement of cucumber. J. Food Sci. Technol. 2021, 58, 1227–1237. [CrossRef]spa
dcterms.bibliographicCitationStark, N.M.; Matuana, L.M. Trends in sustainable biobased packaging materials: A mini review. Mater. Today Sustain. 2021, 15, 100084. [CrossRef]spa
dcterms.bibliographicCitationPodshivalov, A.; Zakharova, M.; Glazacheva, E.; Uspenskaya, M. Gelatin/potato starch edible biocomposite films: Correlation between morphology and physical properties. Carbohydr. Polym. 2017, 157, 1162–1172. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationCheng, Y.; Wang, W.; Zhang, R.; Zhai, X.; Hou, H. Effect of gelatin bloom values on the physicochemical properties of starch/gelatin–beeswax composite films fabricated by extrusion blowing. Food Hydrocoll. 2021, 113, 106466. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/molecules27072264
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85128056388&doi=10.3390%2fmolecules27072264&origin=inward&txGid=5222af6e6cafc3a9bb7abc7b42f90e32
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordscompositesspa
dc.subject.keywordsfood packagingspa
dc.subject.keywordsfilmsspa
dc.subject.keywordsgelatinspa
dc.subject.keywordsstarchspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineQuímicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por