Mostrar el registro sencillo del ítem
Synthesis, Characterization, and Optimization Studies of Starch/Chicken Gelatin Composites for FoodPackaging Applications
dc.contributor.author | Castro, Jorge Iván | |
dc.contributor.other | Navia Porras, Diana Paola | |
dc.contributor.other | Arbeláez Cortés, Jaime Andrés | |
dc.contributor.other | Mina Hernández, José Herminsul | |
dc.contributor.other | Grande Tovar, Carlos David | |
dc.date.accessioned | 2022-11-15T20:45:39Z | |
dc.date.available | 2022-11-15T20:45:39Z | |
dc.date.issued | 2022-03-31 | |
dc.date.submitted | 2022-03-10 | |
dc.identifier.citation | Castro, J. I., Navia-Porras, D. P., Arbeláez Cortés, J. A., Mina Hernández, J. H., & Grande-Tovar, C. D. (2022). Synthesis, Characterization, and Optimization Studies of Starch/Chicken Gelatin Composites for Food-Packaging Applications. Molecules (Basel, Switzerland), 27(7), 2264. https://doi.org/10.3390/molecules27072264 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/871 | |
dc.description.abstract | The indiscriminate use of plastic in food packaging contributes significantly to environmental pollution, promoting the search for more eco-friendly alternatives for the food industry. This work studied five formulations (T1–T5) of biodegradable cassava starch/gelatin films. The results showed the presence of the starch/gelatin functional groups by FT-IR spectroscopy. Differential scanning calorimetry (DSC) showed a thermal reinforcement after increasing the amount of gelatin in the formulations, which increased the crystallization temperature (Tc) from 190 C for the starch-only film (T1) to 206 C for the film with 50/50 starch/gelatin (T3). It also exhibited a homogeneous surface morphology, as evidenced by scanning electron microscopy (SEM). However, an excess of gelatin showed low compatibility with starch in the 25/75 starch/gelatin film (T4), evidenced by the low Tc definition and very rough and fractured surface morphology. Increasing gelatin ratio also significantly increased the strain (from 2.9 0.5% for T1 to 285.1 10.0% for T5) while decreasing the tensile strength (from 14.6 0.5 MPa for T1 to 1.5 0.3 MPa for T5). Water vapor permeability (WVP) increased, and water solubility (WS) also decreased with gelatin mass rising in the composites. On the other hand, opacity did not vary significantly due to the films’ cassava starch and gelatin ratio. Finally, optimizing the mechanical and water barrier properties resulted in a mass ratio of 53/47 cassava starch/gelatin as the most appropriate for their application in food packaging, indicating their usefulness in the food-packaging industry. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Molecules | spa |
dc.title | Synthesis, Characterization, and Optimization Studies of Starch/Chicken Gelatin Composites for FoodPackaging Applications | spa |
dcterms.bibliographicCitation | Walker, T.R.; McGuinty, E.; Charlebois, S.; Music, J. Single-Use Plastic Packaging in the Canadian Food Industry: Consumer Behavior and Perceptions. Humanit. Soc. Sci. Commun. 2021, 8, 80. [CrossRef] | spa |
dcterms.bibliographicCitation | Wang, Y.-L.; Lee, Y.-H.; Chiu, I.-J.; Lin, Y.-F.; Chiu, H.-W. Potent Impact of Plastic Nanomaterials and Micromaterials on the Food Chain and Human Health. Int. J. Mol. Sci. 2020, 21, 1727. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 2018, 8, 4666. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Basiak, E. Food industry: Use of plastics of the twenty-first century. In Food Technology; Apple Academic Press: Palm Bay, FL, USA, 2017; pp. 53–62. ISBN 1315365650. | spa |
dcterms.bibliographicCitation | Alves, V.D.; Ferreira, A.R.; Costa, N.; Freitas, F.; Reis, M.A.M.; Coelhoso, I.M. Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr. Polym. 2011, 83, 1582–1590. [CrossRef] | spa |
dcterms.bibliographicCitation | Reddy, N.; Chen, L.; Yang, Y. Biothermoplastics from hydrolyzed and citric acid crosslinked chicken feathers. Mater. Sci. Eng. C 2013, 33, 1203–1208. [CrossRef] | spa |
dcterms.bibliographicCitation | González, A.; Igarzabal, C.I.A. Soy protein–Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocoll. 2013, 33, 289–296. [CrossRef] | spa |
dcterms.bibliographicCitation | Cercel, F.; Stroiu, M.; Alexe, P.; Iani¸tchi, D. Characterization of myofibrillar chicken breast proteins for obtain protein films and biodegradable coatings generation. Agric. Agric. Sci. Procedia 2015, 6, 197–205. [CrossRef] | spa |
dcterms.bibliographicCitation | Salgado, P.R.; Ortiz, S.E.M.; Petruccelli, S.; Mauri, A.N. Biodegradable sunflower protein films naturally activated with antioxidant compounds. Food Hydrocoll. 2010, 24, 525–533. [CrossRef] | spa |
dcterms.bibliographicCitation | Tapia-Blácido, D.; Sobral, P.J.; Menegalli, F.C. Development and characterization of biofilms based on Amaranth flour (Amaranthus caudatus). J. Food Eng. 2005, 67, 215–223. [CrossRef] | spa |
dcterms.bibliographicCitation | Mendes, J.F.; Paschoalin, R.T.; Carmona, V.B.; Neto, A.R.S.; Marques, A.C.P.; Marconcini, J.M.; Mattoso, L.H.C.; Medeiros, E.S.; Oliveira, J.E. Biodegradable Polymer Blends Based on Corn Starch and Thermoplastic Chitosan Processed by Extrusion. Carbohydr. Polym. 2016, 137, 452–458. [CrossRef] | spa |
dcterms.bibliographicCitation | Santayanon, R.; Wootthikanokkhan, J. Modification of cassava starch by using propionic anhydride and properties of the starch-blended polyester polyurethane. Carbohydr. Polym. 2003, 51, 17–24. [CrossRef] | spa |
dcterms.bibliographicCitation | Souza, A.C.; Benze, R.; Ferrão, E.S.; Ditchfield, C.; Coelho, A.C.V.; Tadini, C.C. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT—Food Sci. Technol. 2012, 46, 110–117. [CrossRef] | spa |
dcterms.bibliographicCitation | Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [CrossRef] | spa |
dcterms.bibliographicCitation | Flores, S.; Famá, L.; Rojas, A.M.; Goyanes, S.; Gerschenson, L. Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate. Food Res. Int. 2007, 40, 257–265. [CrossRef] | spa |
dcterms.bibliographicCitation | Bangyekan, C.; Aht-Ong, D.; Srikulkit, K. Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydr. Polym. 2006, 63, 61–71. [CrossRef] | spa |
dcterms.bibliographicCitation | Parra, D.F.; Tadini, C.C.; Ponce, P.; Lugão, A.B. Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydr. Polym. 2004, 58, 475–481. [CrossRef] | spa |
dcterms.bibliographicCitation | Vanin, F.M.; Sobral, P.J.A.; Menegalli, F.C.; Carvalho, R.A.; Habitante, A. Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll. 2005, 19, 899–907. [CrossRef] | spa |
dcterms.bibliographicCitation | Luo, Q.; Hossen, M.A.; Zeng, Y.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Gelatin-based composite films and their application in food packaging: A review. J. Food Eng. 2022, 313, 110762. [CrossRef] | spa |
dcterms.bibliographicCitation | Ahmad, T.; Ismail, A.; Ahmad, S.A.; Khalil, K.A.; Kumar, Y.; Adeyemi, K.D.; Sazili, A.Q. Recent advances on the role of process variables affecting gelatin yield and characteristics with special reference to enzymatic extraction: A review. Food Hydrocoll. 2017, 63, 85–96. [CrossRef] | spa |
dcterms.bibliographicCitation | Ahmad, M.; Hani, N.M.; Nirmal, N.P.; Fazial, F.F.; Mohtar, N.F.; Romli, S.R. Optical and thermo-mechanical properties of composite films based on fish gelatin/rice flour fabricated by casting technique. Prog. Org. Coatings 2015, 84, 115–127. [CrossRef] | spa |
dcterms.bibliographicCitation | Duconseille, A.; Astruc, T.; Quintana, N.; Meersman, F.; Sante-Lhoutellier, V. Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocoll. 2015, 43, 360–376. [CrossRef] | spa |
dcterms.bibliographicCitation | Mohammadi, R.; Mohammadifar, M.A.; Rouhi, M.; Kariminejad, M.; Mortazavian, A.M.; Sadeghi, E.; Hasanvand, S. Physicomechanical and structural properties of eggshell membrane gelatin- chitosan blend edible films. Int. J. Biol. Macromol. 2018, 107, 406–412. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Li, K.; Jin, S.; Chen, H.; Li, J. Bioinspired interface engineering of gelatin/cellulose nanofibrils nanocomposites with high mechanical performance and antibacterial properties for active packaging. Compos. Part B Eng. 2019, 171, 222–234. [CrossRef] | spa |
dcterms.bibliographicCitation | Boughriba, S.; Souissi, N.; Jridi, M.; Li, S.; Nasri, M. Thermal, mechanical and microstructural characterization and antioxidant potential of Rhinobatos cemiculus gelatin films supplemented by titanium dioxide doped silver nanoparticles. Food Hydrocoll. 2020, 103, 105695. [CrossRef] | spa |
dcterms.bibliographicCitation | Tongdeesoontorn,W.; Mauer, L.J.;Wongruong, S.; Rachtanapun, P.Water Vapour Permeability and Sorption Isotherms of Cassava Starch Based Films Blended with Gelatin and Carboxymethyl Cellulose. Asian J. Food Agro-Ind. 2009, 2, 501–514. | spa |
dcterms.bibliographicCitation | Veiga-Santos, P.; Oliveira, L.M.; Cereda, M.P.; Scamparini, A.R.P. Sucrose and Inverted Sugar as Plasticizer. Effect on Cassava Starch–Gelatin Film Mechanical Properties, Hydrophilicity and Water Activity. Food Chem. 2007, 103, 255–262. [CrossRef] | spa |
dcterms.bibliographicCitation | Biswal, D.R.; Singh, R.P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym. 2004, 57, 379–387. [CrossRef] | spa |
dcterms.bibliographicCitation | Vicentini, N.M.; Dupuy, N.; Leitzelman, M.; Cereda, M.P.; Sobral, P.J.A. Prediction of cassava starch edible film properties by chemometric analysis of infrared spectra. Spectrosc. Lett. 2005, 38, 749–767. [CrossRef] | spa |
dcterms.bibliographicCitation | Tongdeesoontorn, W.; Mauer, L.J.; Wongruong, S.; Sriburi, P.; Rachtanapun, P. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem. Cent. J. 2011, 5, 6. [CrossRef] | spa |
dcterms.bibliographicCitation | Hanani, Z.N.; Roos, Y.; Kerry, J. Fourier Transform Infrared (FTIR) spectroscopic analysis of biodegradable gelatin films immersed in water. In Proceedings of the 11th International Congress on Engineering and Food, ICEF11, Athens, Greece, 22–26 May 2011. | spa |
dcterms.bibliographicCitation | Ahmadi, A.; Ahmadi, P.; Ehsani, A. Development of an active packaging system containing zinc oxide nanoparticles for the extension of chicken fillet shelf life. Food Sci. Nutr. 2020, 8, 5461–5473. [CrossRef] | spa |
dcterms.bibliographicCitation | Cyras, V.P.;Manfredi, L.B.; Ton-That,M.-T.; Vázquez, A. Physical andMechanical Properties of Thermoplastic Starch/Montmorillonite Nanocomposite Films. Carbohydr. Polym. 2008, 73, 55–63. [CrossRef] | spa |
dcterms.bibliographicCitation | Moreno, O.; Cárdenas, J.; Atarés, L.; Chiralt, A. Influence of Starch Oxidation on the Functionality of Starch-Gelatin Based Active Films. Carbohydr. Polym. 2017, 178, 147–158. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Lee, J.-H.; Lee, J.; Song, K. Bin Development of a chicken feet protein film containing essential oils. Food Hydrocoll. 2015, 46, 208–215. [CrossRef] | spa |
dcterms.bibliographicCitation | Tarique, J.; Sapuan, S.M.; Khalina, A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci. Rep. 2021, 11, 13900. [CrossRef] | spa |
dcterms.bibliographicCitation | Moreno, O.; Díaz, R.; Atarés, L.; Chiralt, A. Influence of the Processing Method and Antimicrobial Agents on Properties of Starch-gelatin Biodegradable Films. Polym. Int. 2016, 65, 905–914. [CrossRef] | spa |
dcterms.bibliographicCitation | Verdonck, E.; Schaap, K.; Thomas, L.C. A discussion of the principles and applications of Modulated Temperature DSC (MTDSC). Int. J. Pharm. 1999, 192, 3–20. [CrossRef] | spa |
dcterms.bibliographicCitation | De Almeida, P.F. Análise Da Qualidade de Gelatina Obtida de Tarsos de Frango e Aspectos Envolvidos No Processo Produtivo; Uninove: São Paulo, Brazil, 2012. | spa |
dcterms.bibliographicCitation | Loo, C.P.Y.; Sarbon, N.M. Chicken skin gelatin films with tapioca starch. Food Biosci. 2020, 35, 100589. [CrossRef] | spa |
dcterms.bibliographicCitation | Tongdeesoontorn,W.; Mauer, L.J.;Wongruong, S.; Sriburi, P.; Reungsang, A.; Rachtanapun, P. Antioxidant films from cassava starch/gelatin biocomposite fortified with quercetin and TBHQ and their applications in food models. Polymers 2021, 13, 1117. [CrossRef] | spa |
dcterms.bibliographicCitation | Soo, P.Y.; Sarbon, N.M. Preparation and characterization of edible chicken skin gelatin film incorporated with rice flour. Food Packag. Shelf Life 2018, 15, 1–8. [CrossRef] | spa |
dcterms.bibliographicCitation | Sarbon, N.M.; Badii, F.; Howell, N.K. Preparation and characterisation of chicken skin gelatin as an alternative to mammalian gelatin. Food Hydrocoll. 2013, 30, 143–151. [CrossRef] | spa |
dcterms.bibliographicCitation | Wang, L.Z.; Liu, L.; Holmes, J.; Kerry, J.F.; Kerry, J.P. Assessment of film-forming potential and properties of protein and polysaccharide-based biopolymer films. Int. J. Food Sci. Technol. 2007, 42, 1128–1138. [CrossRef] | spa |
dcterms.bibliographicCitation | Tongdeesoontorn,W.; Mauer, L.J.;Wongruong, S.; Sriburi, P.; Rachtanapun, P. Mechanical and Physical Properties of Cassava Starch-Gelatin Composite Films. Int. J. Polym. Mater. 2012, 61, 778–792. [CrossRef] | spa |
dcterms.bibliographicCitation | Al-Hassan, A.; Norziah, M. Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocoll. 2012, 26, 108–117. [CrossRef] | spa |
dcterms.bibliographicCitation | Fakhouri, F.M.; Martelli, S.M.; Bertan, L.C.; Yamashita, F.; Mei, L.H.I.; Queiroz, F.P.C. Edible films made from blends of manioc starch and gelatin–Influence of different types of plasticizer and different levels of macromolecules on their properties. Postharvest Biol. Technol. 2012, 49, 149–154. [CrossRef] | spa |
dcterms.bibliographicCitation | Acosta, S.; Jiménez, A.; Cháfer, M.; González-Martínez, C.; Chiralt, A. Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocoll. 2015, 49, 135–143. [CrossRef] | spa |
dcterms.bibliographicCitation | Najwa, I.S.N.A.; Guerrero, P.; de la Caba, K.; Hanani, Z.A.N. Physical and antioxidant properties of starch/gelatin films incorporated with Garcinia atroviridis leaves. Food Packag. Shelf Life 2020, 26, 100583. [CrossRef] | spa |
dcterms.bibliographicCitation | Fakhouri, F.M.; Costa, D.; Yamashita, F.; Martelli, S.M.; Jesus, R.C.; Alganer, K.; Collares-queiroz, F.P.; Innocentini-mei, L.H. Comparative study of processing methods for starch/gelatin films. Carbohydr. Polym. 2013, 95, 681–689. [CrossRef] | spa |
dcterms.bibliographicCitation | Zhang, Y.; Du, Z.; Xia, X.; Guo, Q.; Wu, H.; Yu, W. Evaluation of the migration of UV-ink photoinitiators from polyethylene food packaging by supercritical fluid chromatography combined with photodiode array detector and tandem mass spectrometry. Polym. Test. 2016, 53, 276–282. [CrossRef] | spa |
dcterms.bibliographicCitation | Kumar, R.; Goyal, G.G.M. Synthesis and functional properties of gelatin/CA–starch composite film: Excellent food packaging material. J. Food Sci. Technol. 2019, 56, 1954–1965. [CrossRef] | spa |
dcterms.bibliographicCitation | Kumar, R. Biodegradable composite films/coatings of modified corn starch/gelatin for shelf life improvement of cucumber. J. Food Sci. Technol. 2021, 58, 1227–1237. [CrossRef] | spa |
dcterms.bibliographicCitation | Stark, N.M.; Matuana, L.M. Trends in sustainable biobased packaging materials: A mini review. Mater. Today Sustain. 2021, 15, 100084. [CrossRef] | spa |
dcterms.bibliographicCitation | Podshivalov, A.; Zakharova, M.; Glazacheva, E.; Uspenskaya, M. Gelatin/potato starch edible biocomposite films: Correlation between morphology and physical properties. Carbohydr. Polym. 2017, 157, 1162–1172. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Cheng, Y.; Wang, W.; Zhang, R.; Zhai, X.; Hou, H. Effect of gelatin bloom values on the physicochemical properties of starch/gelatin–beeswax composite films fabricated by extrusion blowing. Food Hydrocoll. 2021, 113, 106466. [CrossRef] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/molecules27072264 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.identifier.url | https://www.scopus.com/record/display.uri?eid=2-s2.0-85128056388&doi=10.3390%2fmolecules27072264&origin=inward&txGid=5222af6e6cafc3a9bb7abc7b42f90e32 | |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | composites | spa |
dc.subject.keywords | food packaging | spa |
dc.subject.keywords | films | spa |
dc.subject.keywords | gelatin | spa |
dc.subject.keywords | starch | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Química | spa |
dc.publisher.sede | Sede Norte | spa |