Mostrar el registro sencillo del ítem
Impact of Pheidole fallax (Hymenoptera: Formicidae) as an Ecosystem Engineer in Rehabilitated Coal Mine Areas
dc.contributor.author | Domínguez Haydar, Yamileth | |
dc.contributor.other | Gutierrez Rapalino, Bleydis Paola | |
dc.contributor.other | Barros Torres, Yair | |
dc.contributor.other | Jiménez, Juan José | |
dc.contributor.other | Lozano Baez, Sergio Esteban | |
dc.contributor.other | Castellini, Mirko | |
dc.date.accessioned | 2022-11-15T19:46:02Z | |
dc.date.available | 2022-11-15T19:46:02Z | |
dc.date.issued | 2022-02-01 | |
dc.date.submitted | 2022-01-08 | |
dc.identifier.citation | Domínguez-Haydar, Y.; Gutierrez-Rapalino, B.P.; Barros-Torres, Y.; Jiménez, J.J.; Lozano-Baez, S.E.; Castellini, M. Impact of Pheidole fallax (Hymenoptera: Formicidae) as an Ecosystem Engineer in Rehabilitated Coal Mine Areas. Appl. Sci. 2022, 12, 1573. https://doi.org/10.3390/ app12031573 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/858 | |
dc.description.abstract | Pheidole fallax is one the most abundant ants in sites where coal mines have undergone rehabilitation and in forests without mine intervention. The impact that this species may have as an ecosystem engineer needs to be assessed. We aimed to test whether P. fallax nests have an effect on soil chemical properties, to characterize the organic debris found in the refuse piles, and to describe nest architecture as proxy of the bioturbation effect. The study was carried out in a coal mine in Colombia, in sites with 16 and 20 years of rehabilitation. Samples were taken from inside the nests, from the external refuse pile, and from a control treatment one meter away from the nest. The three sample types were subjected to chemical analysis and near-infrared spectra (NIRS). The biomass of items from the 20-year site was significantly greater, and P. fallax use food resources of different trophic levels, with arthropods and seeds being the main items in their diet. The NIRS analysis enabled us to distinguish the origin of the sample: refuse pile, interior of nest, or control soil. No statistical differences were found between the soil of the nests and control soil. High contents of organic matter and other parameters contributed to the soil nutrient pool through accumulation of organic debris in the refuse piles. Nest molds presented an asymmetric architecture, with mean volume ranging from 30 to 105.7 cm3 and an average of 11.8 chambers per nest. The construction and maintenance of nests may play an important role in the reestablishment of ecological and hydrological processes, such as bioturbation and water infiltration, respectively. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Appl. Sci. | spa |
dc.title | Impact of Pheidole fallax (Hymenoptera: Formicidae) as an Ecosystem Engineer in Rehabilitated Coal Mine Areas | spa |
dcterms.bibliographicCitation | Mansourian, S.; Vallauri, D.; Dudley, N. Forest Restoration in Landscapes: Beyond Planting Trees; Springer: New York, NY, USA, 2005; ISBN 978-0-387-25525-5. | spa |
dcterms.bibliographicCitation | Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [CrossRef] | spa |
dcterms.bibliographicCitation | Prach, K.; Hobbs, R.J. Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor. Ecol. 2008, 16, 363–366. [CrossRef] | spa |
dcterms.bibliographicCitation | Lavelle, P.; Spain, A.; Blouin, M.; Brown, G.; Decaëns, T.; Grimaldi, M.; Jiménez, J.J.; McKey, D.; Mathieu, J.; Velasquez, E.; et al. Ecosystem engineers in a self-organized soil: A Review of concepts and future research questions. Soil Sci. 2016, 181, 91–109. [CrossRef] | spa |
dcterms.bibliographicCitation | Lozano-Baez, S.E.; Domínguez-Haydar, Y.; Meli, P.; Meerveld, I.; Vásquez, K.V.; Castellini, M. Key gaps in soil monitoring during forest restoration in Colombia. Restor. Ecol. 2021, 29, e13391. [CrossRef] | spa |
dcterms.bibliographicCitation | Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373. [CrossRef] | spa |
dcterms.bibliographicCitation | Lee, K.; Foster, R. Soil Fauna and Soil Structure. Soil Res. 1991, 29, 745. [CrossRef] | spa |
dcterms.bibliographicCitation | Dauber, J.; Niechoj, R.; Baltruschat, H.; Wolters, V. Soil engineering ants increase grass root arbuscular mycorrhizal colonization. Biol. Fertil. Soils 2008, 44, 791–796. [CrossRef] | spa |
dcterms.bibliographicCitation | Folgarait, P.J. Ant biodiversity and its relationship to ecosystem functioning: A review. Biodivers. Conserv. 1998, 7, 1221–1244. [CrossRef] | spa |
dcterms.bibliographicCitation | Eldridge, D. Effect of ants on sandy soils in semi-arid eastern Australia—Local distribution of nest entrances and their effect on infiltration of water. Soil Res. 1993, 31, 509. [CrossRef] | spa |
dcterms.bibliographicCitation | Jiménez, J.J.; Decaëns, T.; Lavelle, P. C and N concentrations in biogenic structures of a soil-feeding termite and a fungus-growing ant in the Colombian savannas. Appl. Soil Ecol. 2008, 40, 120–128. [CrossRef] | spa |
dcterms.bibliographicCitation | Lobry de Bruyn, L.A. Ants as bioindicators of soil function in rural environments. Agric. Ecosyst. Environ. 1999, 74, 425–441. [CrossRef] | spa |
dcterms.bibliographicCitation | Andersen, A.N.; Majer, J.D. Ants show the way down under: Invertebrates as bioindicators in land management. Front. Ecol. Environ. 2004, 2, 291–298. [CrossRef] | spa |
dcterms.bibliographicCitation | Buchori, D.; Rizali, A.; Rahayu, G.A.; Mansur, I. Insect diversity in post-mining areas: Investigating their potential role as bioindicator of reclamation success. Biodiversitas 2018, 19, 1696–1702. [CrossRef] | spa |
dcterms.bibliographicCitation | Domínguez-Haydar, Y.; Armbrecht, I. Response of ants and their seed removal in rehabilitation areas and forests at El Cerrejón coal mine in Colombia. Restor. Ecol. 2011, 19, 178–184. [CrossRef] | spa |
dcterms.bibliographicCitation | Menta, C.; Conti, F.D.; Pinto, S.; Leoni, A.; Lozano-Fondón, C. Monitoring soil restoration in an open-pit mine in northern italy. Appl. Soil Ecol. 2014, 83, 22–29. [CrossRef] | spa |
dcterms.bibliographicCitation | Frouz, J.; Holec, M.; Kalˇcík, J. The Effect of Lasius Niger (Hymenoptera, Formicidae) ant nest on selected soil chemical properties. Pedobiologia 2003, 47, 205–212. [CrossRef] | spa |
dcterms.bibliographicCitation | Philpott, S.M.; Perfecto, I.; Armbrecht, I.; Parr, C.L. Ant diversity and function in disturbed and changing habitats. In Ant Ecology; Lach, L., Parr, C., Abbott, K., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 137–156, ISBN 978-0-19-954463-9. | spa |
dcterms.bibliographicCitation | Leal, I.R.; Wirth, R.; Tabarelli, M. Seed dispersal by ants in the Semi-Arid Caatinga of North-East Brazil. Ann. Bot. 2007, 99, 885–894. [CrossRef] | spa |
dcterms.bibliographicCitation | Lôbo, D.; Tabarelli, M.; Leal, I. Relocation of Croton sonderianus (Euphorbiaceae) seeds by Pheidole fallax Mayr (Formicidae): A case of post-dispersal seed protection by ants? Neotrop. Entomol. 2011, 40, 440–444. [CrossRef] | spa |
dcterms.bibliographicCitation | Itzkowitz, M.; Haley, M. The food retrieval tactics of the ant Pheidole fallax Mayr. Insectes Sociaux 1983, 30, 317–322. [CrossRef] | spa |
dcterms.bibliographicCitation | Gutierrez Rapalino, B.P.; Domínguez Haydar, Y.D.C. Contribución de Pheidole fallax y Ectatomma ruidum (Hymenoptera: Formicidae) en la dispersión y germinación de semillas en áreas rehabilitadas de la mina de Carbón Del Cerrejón, Colombia. Rev. Biol. Tropical 2017, 65, 575–587. [CrossRef] | spa |
dcterms.bibliographicCitation | Shukla, R.K.; Singh, H.; Rastogi, N.; Agarwal, V.M. Impact of abundant Pheidole ant species on soil nutrients in relation to the food biology of the species. Appl. Soil Ecol. 2013, 71, 15–23. [CrossRef] | spa |
dcterms.bibliographicCitation | Gualdrón Acosta, R. Cerrejón: Hacia La Rehabilitación de Las Tierras Intervenidas Por La Minería a Cielo Abierto; Cerrejón: Bogotá, Colombia, 2011; ISBN 978-958-99731-8-9. | spa |
dcterms.bibliographicCitation | Domínguez-Haydar, Y.; Gutierrez-Rapalino, B.; Jiménez, J.J. Density and spatial distribution of nests of Ectatomma ruidum and Pheidole fallax (Hymenoptera: Formicidae), as response to the recovery of coal mine areas. Sociobiology 2018, 65, 415. [CrossRef] | spa |
dcterms.bibliographicCitation | Ben-Dor, E.; Banin, A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [CrossRef] | spa |
dcterms.bibliographicCitation | Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [CrossRef] | spa |
dcterms.bibliographicCitation | EMBRAPA. Manual of methods of soil Analysis, 2nd ed.; Embrapa Soils: Rio de Janeiro, Brazil, 2011. | spa |
dcterms.bibliographicCitation | Zangerlé, A.; Hissler, C.; Blouin, M.; Lavelle, P. Near infrared spectroscopy (nirs) to estimate earthworm cast age. Soil Biol. Biochem. 2014, 70, 47–53. [CrossRef] | spa |
dcterms.bibliographicCitation | De Carvalho Guimarães, I.; Pereira, M.C.; Batista, N.R.; Rodrigues, C.A.P.; Antonialli,W.F. The complex nest architecture of the Ponerinae ant Odontomachus chelifer. PLoS ONE 2018, 13, e0189896. [CrossRef] | spa |
dcterms.bibliographicCitation | Pohlert, T. The Pairwise Multiple Comparison of Mean Ranks Package (PMCMRplus). Available online: https://cran.r-project. org/web/packages/PMCMRplus/PMCMRplus.pdf (accessed on 23 January 2022). | spa |
dcterms.bibliographicCitation | Wittkowski, K.M.; Song, T. Package MuStat: Prentice Rank Sum Test and McNemar Test. Available online: https://cran.r-project. org/web/packages/muStat/muStat.pdf (accessed on 23 January 2022). | spa |
dcterms.bibliographicCitation | R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2021. | spa |
dcterms.bibliographicCitation | Majer, J.D. Animals in the restoration process-progressing the trends. Restor. Ecol. 2009, 17, 315–319. [CrossRef] | spa |
dcterms.bibliographicCitation | Agarwal, V.M.; Rastogi, N.; Raju, S.V.S. Impact of predatory ants on two Lepidopteran insect pests in Indian cauliflower agroecosystems. J. Appl. Entomol. 2007, 131, 493–500. [CrossRef] | spa |
dcterms.bibliographicCitation | Cammeraat, L.H.;Willott, S.J.; Compton, S.G.; Incoll, L.D. The effects of ants’ nests on the physical, chemical and hydrological properties of a rangeland Soil in Semi-Arid Spain. Geoderma 2002, 105, 1–20. [CrossRef] | spa |
dcterms.bibliographicCitation | Moutinho, P.; Nepstad, D.C.; Davidson, E.A. Influence of leaf-cutting ant nests on secondary forest growth and soil properties in amazonia. Ecology 2003, 84, 1265–1276. [CrossRef] | spa |
dcterms.bibliographicCitation | Wagner, D.; Brown, M.J.F.; Gordon, D.M. Harvester Ant nests, soil biota and soil chemistry. Oecologia 1997, 112, 232–236. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Holec, M.; Frouz, J. The effect of two ant species lasius niger and lasius flavus on soil properties in two contrasting habitats. Eur. J. Soil Biol. 2006, 42, S213–S217. [CrossRef] | spa |
dcterms.bibliographicCitation | Levan, M.A.; Stone, E.L. Soil modification by colonies of black meadow ants in a New York old field. Soil Sci. Soc. Am. J. 1983, 47, 1192. [CrossRef] | spa |
dcterms.bibliographicCitation | Domínguez-Haydar, Y.; Velásquez, E.; Zangerlé, A.; Lavelle, P.; Gutiérrez-Eisman, S.; Jiménez, J.J. Unveiling the age and origin of biogenic aggregates produced by earthworm species with their NIRS Fingerprint in a Subalpine Meadow of Central Pyrenees. PLoS ONE 2020, 15, e0237115. [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Velasquez, E.; Pelosi, C.; Brunet, D.; Grimaldi, M.; Martins, M.; Rendeiro, A.C.; Barrios, E.; Lavelle, P. This ped is my ped: Visual separation and near infrared spectra allow determination of the origins of soil macroaggregates. Pedobiologia 2007, 51, 75–87. [CrossRef] | spa |
dcterms.bibliographicCitation | Tschinkel, W.R. The nest architecture of the ant, camponotus socius. J. Insect Sci. 2005, 5, 9. [CrossRef] | spa |
dcterms.bibliographicCitation | Forti, L.C.; Camargo, R.S.; Fujihara, R.T.; Lopes, J.F.S. The nest architecture of the ant, Pheidole oxyops Forel (Hymenoptera: Formicidae). Insect Sci. 2007, 14, 437–442. [CrossRef] | spa |
dcterms.bibliographicCitation | Domínguez-Haydar, Y.; Velásquez, E.; Carmona, J.; Lavelle, P.; Chavez, L.F.; Jiménez, J.J. Evaluation of reclamation success in an open-pit coal mine using integrated soil physical, chemical and biological quality indicators. Ecol. Indic. 2019, 103, 182–193. [CrossRef] | spa |
dcterms.bibliographicCitation | Farji-Brener, A.G.; Werenkraut, V. The effects of ant nests on soil fertility and plant performance: A meta-analysis. J. Anim. Ecol. 2017, 86, 866–877. [CrossRef] | spa |
dcterms.bibliographicCitation | Leite, P.A.M.; Carvalho, M.C.; Wilcox, B.P. Good ant, bad ant? Soil engineering by ants in the brazilian caatinga differs by species. Geoderma 2018, 323, 65–73. [CrossRef] | spa |
dcterms.bibliographicCitation | Wang, D.; Lowery, B.; Norman, J.M.; McSweeney, K. Ant burrow effects on water flow and soil hydraulic properties of sparta sand. Soil Tillage Res. 1996, 37, 83–93. [CrossRef] | spa |
dcterms.bibliographicCitation | Nkem, J.N.; Lobry de Bruyn, L.A.; Grant, C.D.; Hulugalle, N.R. The impact of ant bioturbation and foraging activities on surrounding soil properties. Pedobiologia 2000, 44, 609–621. [CrossRef] | spa |
dcterms.bibliographicCitation | O’Grady, A.; Breen, J.; Harrington, T.J.; Courtney, R. The seed bank in soil from the nests of grassland ants in a unique limestone grassland community in Ireland. Ecol. Eng. 2013, 61, 58–64. [CrossRef] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/ app12031573 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.identifier.url | https://www.scopus.com/record/display.uri?eid=2-s2.0-85124324983&doi=10.3390%2fapp12031573&origin=inward&txGid=7ee9535e4f0c360c5d7bce20fd8e7978 | |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | ant nest architecture | spa |
dc.subject.keywords | bioturbation | spa |
dc.subject.keywords | forest restoration | spa |
dc.subject.keywords | mine reclamation | spa |
dc.subject.keywords | NIRS | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Biología | spa |
dc.publisher.sede | Sede Norte | spa |