Mostrar el registro sencillo del ítem

dc.contributor.authorSaldaña, Karen
dc.contributor.otherAngulo, Edgardo
dc.contributor.otherMercado, Ivan
dc.contributor.otherCastellar, Grey
dc.contributor.otherCubillán, Néstor
dc.date.accessioned2022-11-15T19:45:54Z
dc.date.available2022-11-15T19:45:54Z
dc.date.issued2021-12-16
dc.date.submitted2021-10-06
dc.identifier.citationSaldaña, K., Angulo, E., Mercado, I., Castellar, G., & Cubillán, N. (2022). Removal of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomass. Bioresource Technology Reports, 17, 100921. https://doi.org/https://doi.org/10.1016/j.biteb.2021.100921spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/857
dc.description.abstractThis work evaluated the removal of minocycline (MC) by the nonliving Chlorella sp. biomass (NLB) and modified by a lipid extraction procedure (LEB). Both biomasses have different morphology (NLB: globular-like; LEB: flakes and blocks) and size distribution. The pH showed a significant synergistic influence on MC removal (p < 0.05). MC initial concentration (C0) and biomass dosage significantly interact, suggesting that LEB agglomeration decreased removal. NLB removed 90.8 ± 1.3% of MC and LEB 80.8 ± 1.4% at C0 = 53.89 mg/L, 50 mg of biomass and pH 10. The adsorption kinetics and isotherms suggested multilayer formation by physical and chemical adsorption on heterogeneous and macroporous surfaces. According to results, NLB as an adsorbent had an economic disadvantage because of production costs despite good removal efficiency. However, it is possible to take advantage of the biomass after removing value-added compounds (LEB) as a zero-waste strategy.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceBioresource Technology Reportsspa
dc.titleRemoval of minocycline from high concentrated aqueous medium by nonliving and lipid-free Chlorella sp. biomassspa
dcterms.bibliographicCitationAalizadeh, R., von der Ohe, P.C., Thomaidis, N.S., 2017. Prediction of acute toxicity of emerging contaminants on the water flea Daphnia magna by ant colony optimization-support vector machine QSTR models. Environ Sci Process Impacts 19, 438–448. https://doi.org/10.1039/C6EM00679E.spa
dcterms.bibliographicCitationAlver, E., Metin, A.Ü., 2012. Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem. Eng. J. 200–202, 59–67. https://doi.org/10.1016/j.cej.2012.06.038.spa
dcterms.bibliographicCitationAngulo, E., Bula, L., Mercado, I., Monta˜no, A., Cubill´an, N., 2018. Bioremediation of Cephalexin with non-living Chlorella sp., biomass after lipid extraction. Bioresour. Technol. 257, 17–22. https://doi.org/10.1016/j.biortech.2018.02.079.spa
dcterms.bibliographicCitationBligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917. https://doi.org/10.1139/o59-099.spa
dcterms.bibliographicCitationBrigante, M., Schulz, P.C., 2012a. Adsorption of the antibiotic minocycline on cerium (IV) oxide: effect of pH, ionic strength and temperature. Microporous Mesoporous Mater. 156, 138–144.spa
dcterms.bibliographicCitationBrigante, M., Schulz, P.C., 2012b. Cerium (IV) oxide: synthesis in alkaline and acidic media, characterization and adsorption properties. Chem. Eng. J. 191, 563–570.spa
dcterms.bibliographicCitationBrigante, M., Parolo, M.E., Schulz, P.C., Avena, M., 2014. Synthesis, characterization of mesoporous silica powders and application to antibiotic remotion from aqueous solution. Effect of supported Fe-oxide on the SiO2 adsorption properties. Powder Technol. 253, 178–186.spa
dcterms.bibliographicCitationBushra, R., Ahmed, A., Shahadat, M., 2017. Mechanism of adsorption on nanomaterials. In: RSC Detection Science. Royal Society of Chemistry, pp. 90–111. https://doi.org/ 10.1039/9781782623625-00090.spa
dcterms.bibliographicCitationChoi, K.-J., Son, H.-J., Kim, S.-H., 2007. Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic. Sci. Total Environ. 387, 247–256. https://doi.org/ 10.1016/j.scitotenv.2007.07.024.spa
dcterms.bibliographicCitationChoi, K.J., Kim, S.G., Kim, S.H., 2008. Removal of antibiotics by coagulation and granular activated carbon filtration. J. Hazard. Mater. 151, 38–43. https://doi.org/ 10.1016/j.jhazmat.2007.05.059.spa
dcterms.bibliographicCitationCosta, J.A.V., Freitas, B.C.B., Moraes, L., Zaparoli, M., Morais, M.G., 2020. Progress in the physicochemical treatment of microalgae biomass for value-added product recovery. Bioresour. Technol. 301, 122727 https://doi.org/10.1016/J. BIORTECH.2019.122727.spa
dcterms.bibliographicCitationDaghrir, R., Drogui, P., 2013. Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 11, 209–227. https://doi.org/10.1007/s10311-013-0404-8.spa
dcterms.bibliographicCitationDalm, D., Palm, G.J., Aleksandrov, A., Simonson, T., Hinrichs, W., 2010. Nonantibiotic properties of tetracyclines: Structural basis for inhibition of secretory phospholipase A2. J. Mol. Biol. 398, 83–96. https://doi.org/10.1016/J.JMB.2010.02.049.spa
dcterms.bibliographicCitationEbadi, A., Soltan Mohammadzadeh, J.S., Khudiev, A., 2009. What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 15, 65–73. https:// doi.org/10.1007/s10450-009-9151-3.spa
dcterms.bibliographicCitationEnkeMm, Z.E., Ngangom, B.L., Tamunjoh, S.S.A., Boyom, F.F., 2018. Antibiotic residues in food animals: public health concern. Acta Ecol. Sin. https://doi.org/10.1016/j. chnaes.2018.10.004.spa
dcterms.bibliographicCitationFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, ¨O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., 2009. Gaussian 09 Revision A.2. Wallingford.spa
dcterms.bibliographicCitationGuo, X., Su, G., Li, Z., Chang, J., Zeng, X., Sun, Y., Lu, Y., Lin, L., 2015. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp. Bioresour. Technol. 191, 385–390. https://doi.org/10.1016/J. BIORTECH.2015.04.014.spa
dcterms.bibliographicCitationGuo, W.-Q., Zheng, H.-S., Li, S., Du, J.-S., Feng, X.-C., Yin, R.-L., Wu, Q.-L., Ren, N.-Q., Chang, J.-S., 2016. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Bioresour. Technol. 221, 284–290. https://doi.org/10.1016/J.BIORTECH.2016.09.036.spa
dcterms.bibliographicCitationHanifzadeh, M., Sarrafzadeh, M.-H., Nabati, Z., Tavakoli, O., Feyzizarnagh, H., 2018. Technical, economic and energy assessment of an alternative strategy for mass production of biomass and lipid from microalgae. J. Environ. Chem. Eng. 6, 866–873. https://doi.org/10.1016/J.JECE.2018.01.008.spa
dcterms.bibliographicCitationHu, X., Jia, L., Cheng, J., Sun, Z., 2019. Magnetic ordered mesoporous carbon materials for adsorption of minocycline from aqueous solution: preparation, characterization and adsorption mechanism. J. Hazard. Mater. 362, 1–8. https://doi.org/10.1016/J. JHAZMAT.2018.09.003.spa
dcterms.bibliographicCitationKümmerer, K., Henninger, A., 2003. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 9, 1203–1214. https://doi.org/10.1111/j.1469-0691.2003.00739.x.spa
dcterms.bibliographicCitationLi, J., Zhanga, N., Ng, D.H.L., 2015. Synthesis of 3D hierarchical structure of γ-AlO(OH)/ MgAl-LDH/C and its performance in organic dyes and antibiotics adsorption. J. Mater. Chem. A 1–10.spa
dcterms.bibliographicCitationLi, L., Abild-Pedersen, F., Greeley, J., Nørskov, J.K., 2015. Surface Tension Effects on the Reactivity of Metal Nanoparticles. J. Phys. Chem. Lett. 6, 3797–3801. https://doi. org/10.1021/acs.jpclett.5b01746.spa
dcterms.bibliographicCitationLiu, M., Zhang, Y., Yang, M., Tian, Z., Ren, L., Zhang, S., 2012. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environ. Sci. Technol. 46, 7551–7557. https://doi.org/10.1021/ES301145M.spa
dcterms.bibliographicCitationLu, L., Li, J., Yu, J., Song, P., Ng, D.H.L., 2016. A hierarchically porous MgFe2O4/ γ-Fe2O3 magnetic microspheres for efficient removals of dye and pharmaceutical from water. Chem. Eng. J. 283, 524–534. https://doi.org/10.1016/j. cej.2015.07.081.spa
dcterms.bibliographicCitationLv, J., Li, Y.M., 2018. Effect of ozonation on minocycline degradation and NNitrosodimethylamine formation. J. Environ. Sci. Health A Toxic/Hazard. Subst. Environ. Eng. 53, 617–628. https://doi.org/10.1080/10934529.2018.1429724.spa
dcterms.bibliographicCitationMartin, G.J.O., Hill, D.R.A., Olmstead, I.L.D., Bergamin, A., Shears, M.J., Dias, D.A., Kentish, S.E., Scales, P.J., Bott´e, C.Y., Callahan, D.L., 2014. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS One 9, e103389. https://doi.org/10.1371/journal.pone.0103389.spa
dcterms.bibliographicCitationMcKay, G., Otterburn, M.S., Sweeney, A.G., 1980. The removal of colour from effluent using various adsorbents-III. Silica: rate processes. Water Res. 14, 15–20. https://doi. org/10.1016/0043-1354(80)90037-8.spa
dcterms.bibliographicCitationMenegazzo, M.L., Fonseca, G.G., 2019. Biomass recovery and lipid extraction processes for microalgae biofuels production: a review. Renew. Sustain. Energy Rev. https:// doi.org/10.1016/j.rser.2019.01.064.spa
dcterms.bibliographicCitationMontes D’Oca, M.G., Viˆegas, C.V., Lem˜oes, J.S., Miyasaki, E.K., Mor´on-Villarreyes, J.A., Primel, E.G., Abreu, P.C., 2011. Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenergy 35, 1533–1538. https://doi.org/10.1016/J.BIOMBIOE.2010.12.047.spa
dcterms.bibliographicCitationMorgan, D.J., Okeke, I.N., Laxminarayan, R., Perencevich, E.N., Weisenberg, S., 2011. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(11)70054-8.spa
dcterms.bibliographicCitationPalm, G.J., Buchholz, I., Werten, S., Girbardt, B., Berndt, L., Delcea, M., Hinrichs, W., 2020. Thermodynamics, cooperativity and stability of the tetracycline repressor (TetR) upon tetracycline binding. Biochim. Biophys. Acta - Proteins Proteomics 1868, 140404. https://doi.org/10.1016/J.BBAPAP.2020.140404.spa
dcterms.bibliographicCitationPan, L., Cao, Y., Zang, J., Huang, Q., Wang, L., Zhang, Y., Fan, S., Tang, J., Xie, Z., 2019. Preparation of iron-loaded granular activated carbon catalyst and its application in tetracycline antibiotic removal from aqueous solution. Int. J. Environ. Res. Public Health 16, 2270. https://doi.org/10.3390/ijerph16132270.spa
dcterms.bibliographicCitationParolo, M.E., Avena, M.J., Pettinari, G., Zajonkovsky, I., Valles, J.M., Baschini, M.T., 2010. Antimicrobial properties of tetracycline and minocycline-montmorillonites. Appl. Clay Sci. 49, 194–199. https://doi.org/10.1016/j.clay.2010.05.005.spa
dcterms.bibliographicCitationPena, A., Paulo, M., Silva, L.J.G., Seifrtov´a, M., Lino, C.M., Solich, P., 2010. Tetracycline antibiotics in hospital and municipal wastewaters: a pilot study in Portugal. Anal. Bioanal. Chem. 3968 (396), 2929–2936. https://doi.org/10.1007/S00216-010- 3581-3, 2010.spa
dcterms.bibliographicCitationR Development Core Team, 2016. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. R A Lang. Environ. Stat. Comput.spa
dcterms.bibliographicCitationSaadi, R., Saadi, Z., Fazaeli, R., Fard, N.E., 2015. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J. Chem. Eng. 32, 787–799.spa
dcterms.bibliographicCitationSajjadi, B., Chen, W.Y., Raman, A.A.A., Ibrahim, S., 2018. Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew. Sustain. Energy Rev. https://doi.org/ 10.1016/j.rser.2018.07.050.spa
dcterms.bibliographicCitationSanganyado, E., Gwenzi, W., 2019. Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks. Sci. Total Environ. 669, 785–797. https://doi.org/10.1016/J.SCITOTENV.2019.03.162.spa
dcterms.bibliographicCitationScrucca, L., 2013. GA : a package for genetic algorithms in R. J. Stat. Softw. 53, 1–37. https://doi.org/10.18637/jss.v053.i04.spa
dcterms.bibliographicCitationTran, H.N., You, S.-J., Hosseini-Bandegharaei, A., Chao, H.-P., 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res. 120, 88–116. https://doi.org/10.1016/J. WATRES.2017.04.014.spa
dcterms.bibliographicCitationTran, N.H., Reinhard, M., Gin, K.Y.-H., 2018. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 133, 182–207. https://doi.org/10.1016/J. WATRES.2017.12.029.spa
dcterms.bibliographicCitationVan Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P., Teillant, A., Laxminarayan, R., 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U. S. A. 112, 5649–5654. https://doi.org/10.1073/ pnas.1503141112.spa
dcterms.bibliographicCitationWheeler, R., 2004. AlgDesign.spa
dcterms.bibliographicCitationWHO, EMP, IAU, 2019. The 2019 WHO AWaRe Classification of Antibiotics for Evaluation and Monitoring of Use.spa
dcterms.bibliographicCitationWu, Y., Sun, Y., Zhou, C., Niu, J., 2019. Regeneration of porous electrospun membranes embedding alumina nanoparticles saturated with minocycline by UV radiation. Chemosphere 237, 124495. https://doi.org/10.1016/J. CHEMOSPHERE.2019.124495.spa
dcterms.bibliographicCitationYe, C., Mu, D., Horowitz, N., Xue, Z., Chen, J., Xue, M., Zhou, Y., Klutts, M., Zhou, W., 2018. Life cycle assessment of industrial scale production of spirulina tablets. Algal Res. 34, 154–163. https://doi.org/10.1016/J.ALGAL.2018.07.013.spa
dcterms.bibliographicCitationZhang, Z., Liu, H., Wu, L., Lan, H., Qu, J., 2015. Preparation of amino-Fe (III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper. Chemosphere 138, 625–632.spa
dcterms.bibliographicCitationZhou, D., Qiao, B., Li, G., Xue, S., Yin, J., 2017. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions. Bioresour. Technol. 238, 609–615. https://doi.org/10.1016/J. BIORTECH.2017.04.097.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.biteb.2021.100921
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85121430857&doi=10.1016%2fj.biteb.2021.100921&origin=inward&txGid=245479b2c1c4079791efc4438c407f58
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsBioremediationspa
dc.subject.keywordsMinocyclinespa
dc.subject.keywordsMicroalgae biomassspa
dc.subject.keywordsAdsorption isothermsspa
dc.subject.keywordsAdsorption mechanismspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineQuímicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por