Mostrar el registro sencillo del ítem
Soil macrofauna, mesofauna and microfauna and their relationship with soil quality in agricultural areas in northern Colombia: ecological implications
dc.contributor.author | Chamorro Martínez, Yiseth | |
dc.contributor.other | Torregroza Espinosa, Ana Carolina | |
dc.contributor.other | Moreno Pallares, María Inés | |
dc.contributor.other | Pinto Osorio, Diana | |
dc.contributor.other | Corrales Paternina, Amaira | |
dc.contributor.other | Echeverría González, Ana | |
dc.date.accessioned | 2022-11-15T19:45:31Z | |
dc.date.available | 2022-11-15T19:45:31Z | |
dc.date.issued | 2022-07-15 | |
dc.date.submitted | 2021-10-20 | |
dc.identifier.citation | Chamorro-Martínez YC, Torregroza-Espinosa AC, Moreno Pallares MI, Pinto Osorio D, Corrales Paternina A, Echeverría-González A. Soil macrofauna, mesofauna and microfauna and their relationship with soil quality in agricultural areas in northern Colombia: ecological implications. Rev Bras Cienc Solo. 2022;46:e0210132. https://doi.org/10.36783/18069657rbcs20210132 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/854 | |
dc.description.abstract | Soil fauna is an essential component of the soil ecosystem for maintaining nutrient cycling and biological soil fertility. This study assessed the soil biodiversity (macrofauna, mesofauna, and microfauna) to define strategies for the sustainable management of tropical agricultural soils. The study was carried out in 200 agricultural production units in the Department of Sucre, in northern Colombia. Physicochemical properties (organic matter, nitrogen, phosphorus, and pH) were determined for each soil sample. The Berlesse-Tullgren method was used to determine the composition of macrofauna and mesofauna, while the sown surface plate counting method was applied for microfauna. Community biodiversity was quantified with diversity indices, and Pearson correlation was carried out to determine the relationships between soil fauna and soil quality indicators. For the macrofauna, 1330 individuals were found, distributed in 22 orders and 65 families; the families Tenebrionidae, Formicidae, Staphylinidae, Scarabaeidae and Julide presented the highest abundance and distribution. Mesofauna presented 1,171 individuals, distributed in the classes Arachnida with seven families and Collembola with four families; the Scheloribatidae, Isotomidae and Galumnidae families presented the highest abundance and distribution. The indices of richness, Shannon-Wiener diversity and Simpson dominance indicated that biodiversity was higher for macrofauna. Pearson’s correlation indicated significant correlations between soil mesofauna and soil organic matter (R2 = 0.87; p≤0.05) and phosphorous (R2 = 0.70; p≤0.05). The relationships between fauna and soil chemical properties indicate that soil biological diversity is sensitive to changes in the soil environment. This study revealed the importance of investigating the three components of soil fauna (macrofauna, mesofauna, and microfauna), since all three contribute to soil enrichment to grow nourished crops that allow plants to survive under climate change. Finally, this study may serve as a baseline to define strategies for sustainable management of tropical agricultural soils. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Rev Bras Cienc Solo | spa |
dc.title | Soil macrofauna, mesofauna and microfauna and their relationship with soil quality in agricultural areas in northern Colombia: ecological implications | spa |
dcterms.bibliographicCitation | Abera W, Assen M, Budds J. Determinants of agricultural land management practices among smallholder farmers in the Wanka watershed, northwestern highlands of Ethiopia. Land Use Policy. 2020;99:104841. https://doi.org/10.1016/j.landusepol.2020.104841 | spa |
dcterms.bibliographicCitation | Association of Analytical Communities - AOAC. Official methods of analysis AOAC International. 20th ed. Arlington: AOAC International; 2016. | spa |
dcterms.bibliographicCitation | Asfaw A, Zewudie S. Soil macrofauna abundance, biomass and selected soil properties in the home garden and coffee-based agroforestry systems at Wondo Genet, Ethiopia. Environ Sustain Indic. 2021;12:100153. https://doi.org/10.1016/j.indic.2021.100153 | spa |
dcterms.bibliographicCitation | Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, van Bodegom P, Bengtsson-Palme J, Ansla S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P. Structure and function of the global topsoil microbiome. Nature. 2018;560:233-7. https://doi.org/10.1038/s41586-018-0386-6 | spa |
dcterms.bibliographicCitation | Baretta D, Santos JCP, Segat JC, Geremia EV, Oliveira Filho LCI, Alves MV. Fauna edáfica e qualidade do solo. Tópicos Ci Solo. 2011;8:119-70. | spa |
dcterms.bibliographicCitation | Bargali SS, Shukla K, Singh L, Ghosh L, Lakhera M. Leaf litter decomposition and nutrient dynamics in four tree species of dry deciduous forest. Trop Ecol. 2015;56:191-200. | spa |
dcterms.bibliographicCitation | Benamú MA, Lacava M, García LF, Santana M, Viera C. Spiders associated with agroecosystems: Roles and perspectives. In: Viera C, Gonzaga MO, editors. Behaviour and ecology of spiders. Cham: Springer International Publishing; 2017. p. 275-302. | spa |
dcterms.bibliographicCitation | Bobrowsky P, Ball B. The theory and mechanics of ecological diversity in archaeology. Cambridge: Cambridge University Press; 1989. | spa |
dcterms.bibliographicCitation | Cabrera G. La macrofauna edáfica como indicador biológico del estado de conservación/ perturbación del suelo. Resultados obtenidos en Cuba. Pastos y Forrajes. 2012;35:349-63. | spa |
dcterms.bibliographicCitation | Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Change Biol. 2015;21:3200-9. https://doi.org/10.1111/gcb.12982 | spa |
dcterms.bibliographicCitation | Castro-Huerta RA, Falco LB, Sandler RV, Coviella CE. Differential contribution of soil biota groups to plant litter decomposition as mediated by soil use. PeerJ. 2015;3:e826. https://doi.org/10.7717/peerj.826 | spa |
dcterms.bibliographicCitation | Colwell RK. EstimateS 9.1.0 [software]. Boulder: Robert K. Colwell; 2019 [cite 2022 May 05]. Available from: https://www.robertkcolwell.org/pages/estimates. | spa |
dcterms.bibliographicCitation | Daghighi E, Hajizadeh J, Hosseini R, Moravvej A. A checklist of Iranian Collembola with six new records from family Isotomidae (Collembola: Isotomidae). Entomofauna. 2013;11:149-56. | spa |
dcterms.bibliographicCitation | De Alba S, Torri D, Borselli L, Lindstrom M. Degradación del suelo y modificación de los paisajes agrícolas por erosión mecánica (Tillage erosion). J Soil Sci. 2003;10:93-101. | spa |
dcterms.bibliographicCitation | Decaëns T, Lavelle P, Jimenez JJ, Escobar G, Rippstein G. Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. Eur J Soil Biol. 1994;30:157-68. | spa |
dcterms.bibliographicCitation | Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He J, Hseu Z, Hu H, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang J, Weber-Grullon L, Williams MA, Singh BK. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210-20. https://doi.org/10.1038/s41559-019-1084-y | spa |
dcterms.bibliographicCitation | Departamento Nacional de Planeación - DNP. Programa de Desarrollo sostenible de la región de La Mojana. Bogotá: Departamento Nacional de Planeación; 2003. (Informe Terminal). | spa |
dcterms.bibliographicCitation | Dias MFR, Brescovit AD, Menezes M. Aranhas de solo (Arachnida: Araneae) em diferentes fragmentos florestais no sul da Bahia, Brasil. Biota Neotrop. 2005;5:BN010051a2005. https://doi.org/10.1590/S1676-06032005000200012 | spa |
dcterms.bibliographicCitation | Duncan FD, Dickman CR. Respiratory strategies of tenebrionid beetles in arid australia: Does physiology beget nocturnality? Physiol Entomol. 2009;34:52-60. https://doi.org/10.1111/j.1365-3032.2008.00651.x | spa |
dcterms.bibliographicCitation | Dupérré N, Tapia E. The goblin spiders (Araneae, Oonopidae) of the OTONGA Nature Reserve in Ecuador, with the description of seven new species. Evol Syst. 2017;1:87-109. https://doi.org/10.3897/evolsyst.1.14969 | spa |
dcterms.bibliographicCitation | Duran-Bautista EH, Armbrecht I, Acioli ANS, Suárez JC, Romero M, Quintero M, Lavelle P. Termites as indicators of soil ecosystem services in transformed Amazon landscapes. Ecol Indic. 2020;117:106550. https://doi.org/10.1016/j.ecolind.2020.106550 | spa |
dcterms.bibliographicCitation | Fekkoun S, Chebouti-Meziou N, El Kawas H, Slimani I, Khettabi M, Ghezal H. Comparative study of the biodiversity of soil mites between two forests in eastern Algeria. Ukr J Ecol. 2021;11:39-43. https://doi.org/10.15421/2021_292 | spa |
dcterms.bibliographicCitation | Galindo V, Giraldo C, Lavelle P, Armbrecht I, Fonte SJ. Land use conversion to agriculture impacts biodiversity, erosion control, and key soil properties in an Andean watershed. Ecosphere. 2022;13:e397. https://doi.org/10.1002/ecs2.3979 | spa |
dcterms.bibliographicCitation | Gómez-Anaya JA, Palacios-Vargas JG, Castaño-Meneses G. Abundancia de colémbolos (Hexapoda:Collembola) y parámetros edáficos de una selva baja caducifolia. Rev Colomb Entomol. 2010;36:96-105. | spa |
dcterms.bibliographicCitation | Gongalsky KB. Soil macrofauna: Study problems and perspectives. Soil Biol Biochem. 2021;159:108281. https://doi.org/10.1016/j.soilbio.2021.108281 | spa |
dcterms.bibliographicCitation | Gupta VVSR, Roper MM. Protection of free-living nitrogen-fixing bacteria within the soil matrix. Soil Till Res. 2010;109:50-4. https://doi.org/10.1016/j.still.2010.04.002 | spa |
dcterms.bibliographicCitation | Guzmán A, Obando M, Rivera D, Bonilla R. Selección y caracterización de rizobacterias promotoras de crecimiento vegetal (RPCV) asociadas al cultivo de algodón (Gossypium hirsutum). Rev Colomb Biotecnol. 2012;14:182-90. | spa |
dcterms.bibliographicCitation | Heinze S, Raupp J, Joergensen RG. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil. 2010;328:203-15. https://doi.org/10.1007/s11104-009-0102-2 | spa |
dcterms.bibliographicCitation | Ibarra-Núñez G. Las arañas como bioindicadores. In: González CA, Vallarino A, Pérez JC, Low A, editors. Bioindicadores: guardianes de nuestro futuro ambiental. México: El Colegio de la Frontera Sur (ECOSUR), Instituto Nacional de Ecología y Cambio Climático (INECC); 2014. p. 273-90. | spa |
dcterms.bibliographicCitation | Instituto Colombiano de Geología y Minería - Ingeominas. Memoria técnica del mapa de aguas subterráneas del departamento de sucre en escala 1:250.000. Bogotá: Ministerio de minas y energía, Instituto colombiano de geología y minería; 2002. | spa |
dcterms.bibliographicCitation | Instituto Colombiano de Normas Tecnicas y Certificación - Icontec. Norma Técnica Colombiana (NTC) 6299, Calidad del suelo, Determinación de la textura por Bouyoucos. Bogotá: Icontec; 2018. | spa |
dcterms.bibliographicCitation | Instituto Geográfico Agustín Codazzi - IGAC. Suelos y tierras de Colombia, subdirección de agrología. Colombia: IGAC; 2016. | spa |
dcterms.bibliographicCitation | Kiani M, Hernandez-Ramirez G, Quideau S, Smith E, Janzen H, Larney FJ, Puurveen D. Quantifying sensitive soil quality indicators across contrasting long-term land management systems: Crop rotations and nutrient regimes. Agric Ecosyst Environ. 2017;248:123-35. https://doi.org/10.1016/j.agee.2017.07.018 | spa |
dcterms.bibliographicCitation | Knee W. A new Paraleius species (Acari, Oribatida, Scheloribatidae) associated with bark beetles (Curculionidae, Scolytinae) in Canada. ZooKeys. 2017;667:51-65. https://doi.org/10.3897/zookeys.667.12104 | spa |
dcterms.bibliographicCitation | Lavelle P, Bignell D, Lepage M, Wolters W, Roger P, Ineson P, Dhillion O. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur J Soil Biol. 1997;33:159-93. | spa |
dcterms.bibliographicCitation | Lehman R, Cambardella C, Stott D, Acosta-Martinez V, Manter D, Buyer J, Maul J, Smith J, Collins H, Halvorson J, Kremer R, Lundgren J, Ducey T, Jin V, Karlen D. Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability. 2015;7:988-1027. https://doi.org/10.3390/su7010988 | spa |
dcterms.bibliographicCitation | Li X, Liu Y, Duan M, Yu Z, Axmacher JC. Different response patterns of epigaeic spiders and carabid beetles to varying environmental conditions in fields and semi-natural habitats of an intensively cultivated agricultural landscape. Agric Ecosyst Environ. 2018;264:54-62. https://doi.org/10.1016/j.agee.2018.05.005 | spa |
dcterms.bibliographicCitation | Machado-Cuellar L, Rodríguez L, Murcia V, Orduz SA, Ordoñez CM, Suárez JC. Macrofauna del suelo y condiciones edafoclimáticas en un gradiente altitudinal de zonas cafeteras, Huila, Colombia. Rev Biol Trop. 2020;69:102-12. | spa |
dcterms.bibliographicCitation | Mantilla-Paredes A, Cardona G, Peña-Venegas C, Murcia U, Rodríguez M, Zambrano M. Distribución de bacterias potencialmente fijadoras de nitrógeno y su relación con parámetros fisicoquímicos en suelos con tres coberturas vegetales en el sur de la Amazonia colombiana. Rev Biol Trop. 2009;57:915-27. https://doi.org/10.15517/rbt.v57i4.5436 | spa |
dcterms.bibliographicCitation | Martínez-Mera EA, Torregroza-Espinosa AC, Crissien-Borrero TJ, Marrugo-Negrete JL, González-Márquez LC. Evaluation of contaminants in agricultural soils in an irrigation district in Colombia. Heliyon. 2019;5:e02217. https://doi.org/10.1016/j.heliyon.2019.e02217 | spa |
dcterms.bibliographicCitation | Martínez-Mera EA, Torregroza-Espinosa AC, Valencia-García A, Rojas-Gerónimo L. Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia. Soil environ. 2017;36:174-81. https://doi.org/10.25252/SE/17/51202 | spa |
dcterms.bibliographicCitation | Martins ICF, Cividanes FJ, Ide S, Haddad GQ. Diversity and habitat preferences of carabidae and staphylinidae (Coleoptera) in two agroecosystems. Bragantia. 2013;71:471-80. https://doi.org/10.1590/S0006-87052013005000009 | spa |
dcterms.bibliographicCitation | Matute MM, Manning YA, Kaleem MI. Community structure of soil nematodes associated with solanum tuberosum. J Agric Sci. 2013;5:44-53. https://doi.org/10.5539/jas.v5n1p44 | spa |
dcterms.bibliographicCitation | Montejo-Cruz M, Palacios-Vargas J, Castaño-Meneses G. Diversidad de Isotomidae y Neanuridae (Hexapoda: Collembola) de cuatro asociaciones vegetales en la formación Citlaltépetl, Veracruz, México. Entom Mex. 2018;5:239-45. | spa |
dcterms.bibliographicCitation | Morrison WR, Waller JT, Brayshaw AC, Hyman DA, Johnson MR, Fraser AM. Evaluating multiple arthropod taxa as indicators of invertebrate diversity in old fields. Gt Lakes Entomol. 2018;45:56-68. | spa |
dcterms.bibliographicCitation | Murillo-Cuevas FD, Adame J, Cabrera H, Fernández JA. Fauna y microflora edáfica asociada a diferentes usos de suelo. Ecosist Recur Agropec. 2019;6:23-33. https://doi.org/10.19136/era.a6n16.1792 | spa |
dcterms.bibliographicCitation | Nisa RU, Tantray AY, Kouser N, Allie KA, Wani SM, Alamri SA, Alyemeni MN, Wijaya L, Shah AA. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi J Biol Sci. 2021;28:3049-59. https://doi.org/10.1016/j.sjbs.2021.02.046 | spa |
dcterms.bibliographicCitation | Oliveira CM, Afonso GT, Carolino MA, Frizzas MR. Diversity of soil arthropods in sugarcane in the Brazilian Cerrado: Influence of tillage systems, extraction methods, and sampling time. Eur J Soil Biol. 2021;103:103274. https://doi.org/10.1016/j.ejsobi.2020.103274 | spa |
dcterms.bibliographicCitation | Palacios-Vargas JG. Biodiversidad de Collembola (Hexapoda: Entognatha) en México. Rev Mex Biodivers. 2014;85:220-31. https://doi.org/10.7550/rmb.32713 | spa |
dcterms.bibliographicCitation | Peng Y, Yang W, Yue K, Tan B, Wu F. Impacts of soil fauna on nitrogen and phosphorus release during litter decomposition were differently controlled by plant species and ecosystem type. J For Res. 2019;30:921-30. https://doi.org/10.1007/s11676-018-0664-z | spa |
dcterms.bibliographicCitation | Pereira JM, Cardoso E, Brescovit A, Oliveira L, Segat J, Duarte J, Baretta D. Soil spiders (Arachnida: Araneae) in native and reforested Araucaria forests. Sci Agric. 2021;78:e20190198. https://doi.org/10.1590/1678-992X-2019-0198 | spa |
dcterms.bibliographicCitation | Phondani PC, Maikhuri RK, Rawat LS, Negi VS. Assessing farmers’ perception on criteria and indicators for sustainable management of indigenous agroforestry systems in Uttarakhand. India. Environ Sustain Indic. 2020;5:100018. https://doi.org/10.1016/j.indic.2019.100018 | spa |
dcterms.bibliographicCitation | Pielou EC. An introduction to mathematical ecology. New York: John Wiley & Sons; 1969. | spa |
dcterms.bibliographicCitation | Pino V, McBratney A, Fajardo M, Wilson N, Deaker R. Understanding soil biodiversity using two orthogonal 1000km transects across new south wales, Australia. Geoderma. 2019;354:113860. https://doi.org/10.1016/j.geoderma.2019.07.018 | spa |
dcterms.bibliographicCitation | Programa de las Naciones Unidas para el Desarrollo - PNUD. Perfil productivo, municipio de Corozal, Sucre. Bogotá: PNUD; 2015. | spa |
dcterms.bibliographicCitation | R Development Core Team. The R project for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014 [cited 2014 Dec 30]. Available from: http://www.R-project.org/. | spa |
dcterms.bibliographicCitation | República de Colombia Departamento de Sucre. Plan departamental de extensión agropecuaria Sucre, una gran empresa agroproductiva. Colombia: Gobernación Secretaría de Desarrollo Económico y Medio Ambiente; 2020. | spa |
dcterms.bibliographicCitation | Rosa MG, Santos JCP, Brescovit AD, Mafra AL, Baretta D. Spiders (Arachnida:Araneae) in agricultural land use systems in subtropical environments. Rev Bras Cienc Solo. 2018;42:e0160576. https://doi.org/10.1590/18069657rbcs20160576 | spa |
dcterms.bibliographicCitation | Rossi J-P, Blanchart E. Seasonal and land-use induced variations of soil macrofauna composition in the Western Ghats, southern India. Soil Biol Biochem. 2005;37:1093-104. https://doi.org/10.1016/j.soilbio.2004.11.008 | spa |
dcterms.bibliographicCitation | Royero-Mesino SY. Macrofauna edáfica y características físicas y químicas del suelo en áreas con diferentes sistemas de manejo en el departamento del Atlántico. Colombia: Universidad Nacional de Colombia; 2019. | spa |
dcterms.bibliographicCitation | Safaei M, Bashari H, Mosaddeghi MR, Jafari R. Assessing the impacts of land use and land cover changes on soil functions using landscape function analysis and soil quality indicators in semi-arid natural ecosystems. Catena. 2019;177:260-71. https://doi.org/10.1016/j.catena.2019.02.021 | spa |
dcterms.bibliographicCitation | Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x | spa |
dcterms.bibliographicCitation | Simó M, Laborda A, Caroilna J, Castro M. Las arañas en agroecosistemas: Bioindicadores terrestres de calidad ambiental. Innotec. 2011;6:51-5. https://doi.org/10.26461/06.11 | spa |
dcterms.bibliographicCitation | Simpson EH. Measurement of diversity. Nature. 1949;163:688. https://doi.org/10.1038/163688a0 | spa |
dcterms.bibliographicCitation | Slaughter L. Rhizosphere. In: Gentry TJ, Fuhrmann JJ, Zuberer DA, editors. Principles and applications of soil microbiology. United States: Elsevier; 2021. p. 269-301. | spa |
dcterms.bibliographicCitation | Stanturf JA, Palik BJ, Dumroese RK. Contemporary forest restoration: A review emphasizing function. For Ecol Manag. 2014;331:292-323. https://doi.org/10.1016/j.foreco.2014.07.029 | spa |
dcterms.bibliographicCitation | Tantachasatid P, Boyer J, Thanisawanyankura S, Séguy L, Sajjaphan K. Soil macrofauna communities under plant cover in a no-till system in Thailand. Agric Nat Resour. 2017;51:1-6. https://doi.org/10.1016/j.anres.2016.08.004 | spa |
dcterms.bibliographicCitation | Terrado R, Pasulka AL, Lie AA, Orphan VJ, Heidelberg KB, Caron DA. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISME J. 2017;11:2022-34. https://doi.org/10.1038/ismej.2017.68 | spa |
dcterms.bibliographicCitation | Tibbett M, Gil-Martínez M, Fraser T, Green ID, Duddigan S, De Oliveira VH, Raulund-Rasmussen K, Sizmur T, Diaz A. Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena. 2019;180:401-15. https://doi.org/10.1016/j.catena.2019.03.013 | spa |
dcterms.bibliographicCitation | Travez KA. Diversidad de los macroinvertebrados edáficos y su relación con la calidad del suelo en un gradiente de intensidad de uso de la tierra en La Esperanza-Pedro Moncayo-Ecuador. Ecuador: Universidad Central del Ecuador; 2020. | spa |
dcterms.bibliographicCitation | Tulande M, Barrera-Cataño E, Alonso-Malaver JA, Morantes-Ariza CE, Basto C, Salcedo-Reyes JC. Soil macrofauna in areas with different ages after Pinus patula clearcutting. Univ Sci. 2018;23:383-417. https://doi.org/10.11144/javeriana.sc23-3.smia | spa |
dcterms.bibliographicCitation | Valani GP, Vezzani FM, Cavalieri-Polizeli KMV. Soil quality: Evaluation of on-farm assessments in relation to analytical index. Soil Till Res. 2020;198:104565. https://doi.org/10.1016/j.still.2019.104565 | spa |
dcterms.bibliographicCitation | Vasu D, Tiwari G, Sahoo S, Dash B, Jangir A, Sharma RP, Naitam R, Tiwary P, Karthikeyan K, Chandran P. A minimum data set of soil morphological properties for quantifying soil quality in coastal agroecosystems. Catena. 2021;198:105042. https://doi.org/10.1016/j.catena.2020.105042 | spa |
dcterms.bibliographicCitation | Velasquez E, Lavelle P. Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecol. 2019;100:103446. https://doi.org/10.1016/j.actao.2019.103446 | spa |
dcterms.bibliographicCitation | Villarreal-Rosas J, Palacios-Vargas JG, Maya Y. Microarthropod communities related with biological soil crusts in a desert scrub in northwestern Mexico. Rev Mex Biodivers. 2014;85:513-22. https://doi.org/10.7550/rmb.38104 | spa |
dcterms.bibliographicCitation | Wang C, Zhou X, Guo D, Zhao J, Yan L, Feng G, Gao Q, Yu H, Zhao L. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann Microbiol. 2019;69:1461-73. https://doi.org/10.1007/s13213-019-01529-9 | spa |
dcterms.bibliographicCitation | Wang S, Chen HYH, Tan Y, Fan H, Ruan H. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Sci Rep. 2016;6:20816. https://doi.org/10.1038/SREP20816 | spa |
dcterms.bibliographicCitation | Warner F. Soil fertility, pH, texture and nematodes. Diagnostic services. Michigan: Michigan State University; 2009. | spa |
dcterms.bibliographicCitation | Wehr HM, Frank JH. Standard methods for the microbiological examination of dairy products. 17th ed. Washington, DC: American Public Health Association; 2004. | spa |
dcterms.bibliographicCitation | Xia T, Li L, Li B, Dou P, Yang H. Heterotrophic bacteria play an important role in endemism of Cephalostachyum pingbianense, a full-year shooting woody bamboo. Forests. 2022;13:121. https://doi.org/10.3390/f13010121 | spa |
dcterms.bibliographicCitation | Zavaleta MA. Macrofauna y propiedades físicas y químicas del suelo en cultivos de café del Distrito de Jepelacio- Moyobamba. Perú: Universidad Nacional de Trujillo; 2019. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.36783/18069657rbcs20210132 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.identifier.url | https://www.scopus.com/record/display.uri?eid=2-s2.0-85136780572&doi=10.36783%2f18069657rbcs20210132&origin=inward&txGid=82290980cee0656ca46f443049250b94 | |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | soil quality | spa |
dc.subject.keywords | agricultural units | spa |
dc.subject.keywords | sustainable systems | spa |
dc.subject.keywords | land-use | spa |
dc.subject.keywords | conservation | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Biología | spa |
dc.publisher.sede | Sede Norte | spa |