Mostrar el registro sencillo del ítem

dc.contributor.authorChamorro Martínez, Yiseth
dc.contributor.otherTorregroza Espinosa, Ana Carolina
dc.contributor.otherMoreno Pallares, María Inés
dc.contributor.otherPinto Osorio, Diana
dc.contributor.otherCorrales Paternina, Amaira
dc.contributor.otherEcheverría González, Ana
dc.date.accessioned2022-11-15T19:45:31Z
dc.date.available2022-11-15T19:45:31Z
dc.date.issued2022-07-15
dc.date.submitted2021-10-20
dc.identifier.citationChamorro-Martínez YC, Torregroza-Espinosa AC, Moreno Pallares MI, Pinto Osorio D, Corrales Paternina A, Echeverría-González A. Soil macrofauna, mesofauna and microfauna and their relationship with soil quality in agricultural areas in northern Colombia: ecological implications. Rev Bras Cienc Solo. 2022;46:e0210132. https://doi.org/10.36783/18069657rbcs20210132spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/854
dc.description.abstractSoil fauna is an essential component of the soil ecosystem for maintaining nutrient cycling and biological soil fertility. This study assessed the soil biodiversity (macrofauna, mesofauna, and microfauna) to define strategies for the sustainable management of tropical agricultural soils. The study was carried out in 200 agricultural production units in the Department of Sucre, in northern Colombia. Physicochemical properties (organic matter, nitrogen, phosphorus, and pH) were determined for each soil sample. The Berlesse-Tullgren method was used to determine the composition of macrofauna and mesofauna, while the sown surface plate counting method was applied for microfauna. Community biodiversity was quantified with diversity indices, and Pearson correlation was carried out to determine the relationships between soil fauna and soil quality indicators. For the macrofauna, 1330 individuals were found, distributed in 22 orders and 65 families; the families Tenebrionidae, Formicidae, Staphylinidae, Scarabaeidae and Julide presented the highest abundance and distribution. Mesofauna presented 1,171 individuals, distributed in the classes Arachnida with seven families and Collembola with four families; the Scheloribatidae, Isotomidae and Galumnidae families presented the highest abundance and distribution. The indices of richness, Shannon-Wiener diversity and Simpson dominance indicated that biodiversity was higher for macrofauna. Pearson’s correlation indicated significant correlations between soil mesofauna and soil organic matter (R2 = 0.87; p≤0.05) and phosphorous (R2 = 0.70; p≤0.05). The relationships between fauna and soil chemical properties indicate that soil biological diversity is sensitive to changes in the soil environment. This study revealed the importance of investigating the three components of soil fauna (macrofauna, mesofauna, and microfauna), since all three contribute to soil enrichment to grow nourished crops that allow plants to survive under climate change. Finally, this study may serve as a baseline to define strategies for sustainable management of tropical agricultural soils.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceRev Bras Cienc Solospa
dc.titleSoil macrofauna, mesofauna and microfauna and their relationship with soil quality in agricultural areas in northern Colombia: ecological implicationsspa
dcterms.bibliographicCitationAbera W, Assen M, Budds J. Determinants of agricultural land management practices among smallholder farmers in the Wanka watershed, northwestern highlands of Ethiopia. Land Use Policy. 2020;99:104841. https://doi.org/10.1016/j.landusepol.2020.104841spa
dcterms.bibliographicCitationAssociation of Analytical Communities - AOAC. Official methods of analysis AOAC International. 20th ed. Arlington: AOAC International; 2016.spa
dcterms.bibliographicCitationAsfaw A, Zewudie S. Soil macrofauna abundance, biomass and selected soil properties in the home garden and coffee-based agroforestry systems at Wondo Genet, Ethiopia. Environ Sustain Indic. 2021;12:100153. https://doi.org/10.1016/j.indic.2021.100153spa
dcterms.bibliographicCitationBahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, van Bodegom P, Bengtsson-Palme J, Ansla S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P. Structure and function of the global topsoil microbiome. Nature. 2018;560:233-7. https://doi.org/10.1038/s41586-018-0386-6spa
dcterms.bibliographicCitationBaretta D, Santos JCP, Segat JC, Geremia EV, Oliveira Filho LCI, Alves MV. Fauna edáfica e qualidade do solo. Tópicos Ci Solo. 2011;8:119-70.spa
dcterms.bibliographicCitationBargali SS, Shukla K, Singh L, Ghosh L, Lakhera M. Leaf litter decomposition and nutrient dynamics in four tree species of dry deciduous forest. Trop Ecol. 2015;56:191-200.spa
dcterms.bibliographicCitationBenamú MA, Lacava M, García LF, Santana M, Viera C. Spiders associated with agroecosystems: Roles and perspectives. In: Viera C, Gonzaga MO, editors. Behaviour and ecology of spiders. Cham: Springer International Publishing; 2017. p. 275-302.spa
dcterms.bibliographicCitationBobrowsky P, Ball B. The theory and mechanics of ecological diversity in archaeology. Cambridge: Cambridge University Press; 1989.spa
dcterms.bibliographicCitationCabrera G. La macrofauna edáfica como indicador biológico del estado de conservación/ perturbación del suelo. Resultados obtenidos en Cuba. Pastos y Forrajes. 2012;35:349-63.spa
dcterms.bibliographicCitationCastellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Change Biol. 2015;21:3200-9. https://doi.org/10.1111/gcb.12982spa
dcterms.bibliographicCitationCastro-Huerta RA, Falco LB, Sandler RV, Coviella CE. Differential contribution of soil biota groups to plant litter decomposition as mediated by soil use. PeerJ. 2015;3:e826. https://doi.org/10.7717/peerj.826spa
dcterms.bibliographicCitationColwell RK. EstimateS 9.1.0 [software]. Boulder: Robert K. Colwell; 2019 [cite 2022 May 05]. Available from: https://www.robertkcolwell.org/pages/estimates.spa
dcterms.bibliographicCitationDaghighi E, Hajizadeh J, Hosseini R, Moravvej A. A checklist of Iranian Collembola with six new records from family Isotomidae (Collembola: Isotomidae). Entomofauna. 2013;11:149-56.spa
dcterms.bibliographicCitationDe Alba S, Torri D, Borselli L, Lindstrom M. Degradación del suelo y modificación de los paisajes agrícolas por erosión mecánica (Tillage erosion). J Soil Sci. 2003;10:93-101.spa
dcterms.bibliographicCitationDecaëns T, Lavelle P, Jimenez JJ, Escobar G, Rippstein G. Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. Eur J Soil Biol. 1994;30:157-68.spa
dcterms.bibliographicCitationDelgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He J, Hseu Z, Hu H, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang J, Weber-Grullon L, Williams MA, Singh BK. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210-20. https://doi.org/10.1038/s41559-019-1084-yspa
dcterms.bibliographicCitationDepartamento Nacional de Planeación - DNP. Programa de Desarrollo sostenible de la región de La Mojana. Bogotá: Departamento Nacional de Planeación; 2003. (Informe Terminal).spa
dcterms.bibliographicCitationDias MFR, Brescovit AD, Menezes M. Aranhas de solo (Arachnida: Araneae) em diferentes fragmentos florestais no sul da Bahia, Brasil. Biota Neotrop. 2005;5:BN010051a2005. https://doi.org/10.1590/S1676-06032005000200012spa
dcterms.bibliographicCitationDuncan FD, Dickman CR. Respiratory strategies of tenebrionid beetles in arid australia: Does physiology beget nocturnality? Physiol Entomol. 2009;34:52-60. https://doi.org/10.1111/j.1365-3032.2008.00651.xspa
dcterms.bibliographicCitationDupérré N, Tapia E. The goblin spiders (Araneae, Oonopidae) of the OTONGA Nature Reserve in Ecuador, with the description of seven new species. Evol Syst. 2017;1:87-109. https://doi.org/10.3897/evolsyst.1.14969spa
dcterms.bibliographicCitationDuran-Bautista EH, Armbrecht I, Acioli ANS, Suárez JC, Romero M, Quintero M, Lavelle P. Termites as indicators of soil ecosystem services in transformed Amazon landscapes. Ecol Indic. 2020;117:106550. https://doi.org/10.1016/j.ecolind.2020.106550spa
dcterms.bibliographicCitationFekkoun S, Chebouti-Meziou N, El Kawas H, Slimani I, Khettabi M, Ghezal H. Comparative study of the biodiversity of soil mites between two forests in eastern Algeria. Ukr J Ecol. 2021;11:39-43. https://doi.org/10.15421/2021_292spa
dcterms.bibliographicCitationGalindo V, Giraldo C, Lavelle P, Armbrecht I, Fonte SJ. Land use conversion to agriculture impacts biodiversity, erosion control, and key soil properties in an Andean watershed. Ecosphere. 2022;13:e397. https://doi.org/10.1002/ecs2.3979spa
dcterms.bibliographicCitationGómez-Anaya JA, Palacios-Vargas JG, Castaño-Meneses G. Abundancia de colémbolos (Hexapoda:Collembola) y parámetros edáficos de una selva baja caducifolia. Rev Colomb Entomol. 2010;36:96-105.spa
dcterms.bibliographicCitationGongalsky KB. Soil macrofauna: Study problems and perspectives. Soil Biol Biochem. 2021;159:108281. https://doi.org/10.1016/j.soilbio.2021.108281spa
dcterms.bibliographicCitationGupta VVSR, Roper MM. Protection of free-living nitrogen-fixing bacteria within the soil matrix. Soil Till Res. 2010;109:50-4. https://doi.org/10.1016/j.still.2010.04.002spa
dcterms.bibliographicCitationGuzmán A, Obando M, Rivera D, Bonilla R. Selección y caracterización de rizobacterias promotoras de crecimiento vegetal (RPCV) asociadas al cultivo de algodón (Gossypium hirsutum). Rev Colomb Biotecnol. 2012;14:182-90.spa
dcterms.bibliographicCitationHeinze S, Raupp J, Joergensen RG. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil. 2010;328:203-15. https://doi.org/10.1007/s11104-009-0102-2spa
dcterms.bibliographicCitationIbarra-Núñez G. Las arañas como bioindicadores. In: González CA, Vallarino A, Pérez JC, Low A, editors. Bioindicadores: guardianes de nuestro futuro ambiental. México: El Colegio de la Frontera Sur (ECOSUR), Instituto Nacional de Ecología y Cambio Climático (INECC); 2014. p. 273-90.spa
dcterms.bibliographicCitationInstituto Colombiano de Geología y Minería - Ingeominas. Memoria técnica del mapa de aguas subterráneas del departamento de sucre en escala 1:250.000. Bogotá: Ministerio de minas y energía, Instituto colombiano de geología y minería; 2002.spa
dcterms.bibliographicCitationInstituto Colombiano de Normas Tecnicas y Certificación - Icontec. Norma Técnica Colombiana (NTC) 6299, Calidad del suelo, Determinación de la textura por Bouyoucos. Bogotá: Icontec; 2018.spa
dcterms.bibliographicCitationInstituto Geográfico Agustín Codazzi - IGAC. Suelos y tierras de Colombia, subdirección de agrología. Colombia: IGAC; 2016.spa
dcterms.bibliographicCitationKiani M, Hernandez-Ramirez G, Quideau S, Smith E, Janzen H, Larney FJ, Puurveen D. Quantifying sensitive soil quality indicators across contrasting long-term land management systems: Crop rotations and nutrient regimes. Agric Ecosyst Environ. 2017;248:123-35. https://doi.org/10.1016/j.agee.2017.07.018spa
dcterms.bibliographicCitationKnee W. A new Paraleius species (Acari, Oribatida, Scheloribatidae) associated with bark beetles (Curculionidae, Scolytinae) in Canada. ZooKeys. 2017;667:51-65. https://doi.org/10.3897/zookeys.667.12104spa
dcterms.bibliographicCitationLavelle P, Bignell D, Lepage M, Wolters W, Roger P, Ineson P, Dhillion O. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur J Soil Biol. 1997;33:159-93.spa
dcterms.bibliographicCitationLehman R, Cambardella C, Stott D, Acosta-Martinez V, Manter D, Buyer J, Maul J, Smith J, Collins H, Halvorson J, Kremer R, Lundgren J, Ducey T, Jin V, Karlen D. Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability. 2015;7:988-1027. https://doi.org/10.3390/su7010988spa
dcterms.bibliographicCitationLi X, Liu Y, Duan M, Yu Z, Axmacher JC. Different response patterns of epigaeic spiders and carabid beetles to varying environmental conditions in fields and semi-natural habitats of an intensively cultivated agricultural landscape. Agric Ecosyst Environ. 2018;264:54-62. https://doi.org/10.1016/j.agee.2018.05.005spa
dcterms.bibliographicCitationMachado-Cuellar L, Rodríguez L, Murcia V, Orduz SA, Ordoñez CM, Suárez JC. Macrofauna del suelo y condiciones edafoclimáticas en un gradiente altitudinal de zonas cafeteras, Huila, Colombia. Rev Biol Trop. 2020;69:102-12.spa
dcterms.bibliographicCitationMantilla-Paredes A, Cardona G, Peña-Venegas C, Murcia U, Rodríguez M, Zambrano M. Distribución de bacterias potencialmente fijadoras de nitrógeno y su relación con parámetros fisicoquímicos en suelos con tres coberturas vegetales en el sur de la Amazonia colombiana. Rev Biol Trop. 2009;57:915-27. https://doi.org/10.15517/rbt.v57i4.5436spa
dcterms.bibliographicCitationMartínez-Mera EA, Torregroza-Espinosa AC, Crissien-Borrero TJ, Marrugo-Negrete JL, González-Márquez LC. Evaluation of contaminants in agricultural soils in an irrigation district in Colombia. Heliyon. 2019;5:e02217. https://doi.org/10.1016/j.heliyon.2019.e02217spa
dcterms.bibliographicCitationMartínez-Mera EA, Torregroza-Espinosa AC, Valencia-García A, Rojas-Gerónimo L. Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia. Soil environ. 2017;36:174-81. https://doi.org/10.25252/SE/17/51202spa
dcterms.bibliographicCitationMartins ICF, Cividanes FJ, Ide S, Haddad GQ. Diversity and habitat preferences of carabidae and staphylinidae (Coleoptera) in two agroecosystems. Bragantia. 2013;71:471-80. https://doi.org/10.1590/S0006-87052013005000009spa
dcterms.bibliographicCitationMatute MM, Manning YA, Kaleem MI. Community structure of soil nematodes associated with solanum tuberosum. J Agric Sci. 2013;5:44-53. https://doi.org/10.5539/jas.v5n1p44spa
dcterms.bibliographicCitationMontejo-Cruz M, Palacios-Vargas J, Castaño-Meneses G. Diversidad de Isotomidae y Neanuridae (Hexapoda: Collembola) de cuatro asociaciones vegetales en la formación Citlaltépetl, Veracruz, México. Entom Mex. 2018;5:239-45.spa
dcterms.bibliographicCitationMorrison WR, Waller JT, Brayshaw AC, Hyman DA, Johnson MR, Fraser AM. Evaluating multiple arthropod taxa as indicators of invertebrate diversity in old fields. Gt Lakes Entomol. 2018;45:56-68.spa
dcterms.bibliographicCitationMurillo-Cuevas FD, Adame J, Cabrera H, Fernández JA. Fauna y microflora edáfica asociada a diferentes usos de suelo. Ecosist Recur Agropec. 2019;6:23-33. https://doi.org/10.19136/era.a6n16.1792spa
dcterms.bibliographicCitationNisa RU, Tantray AY, Kouser N, Allie KA, Wani SM, Alamri SA, Alyemeni MN, Wijaya L, Shah AA. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi J Biol Sci. 2021;28:3049-59. https://doi.org/10.1016/j.sjbs.2021.02.046spa
dcterms.bibliographicCitationOliveira CM, Afonso GT, Carolino MA, Frizzas MR. Diversity of soil arthropods in sugarcane in the Brazilian Cerrado: Influence of tillage systems, extraction methods, and sampling time. Eur J Soil Biol. 2021;103:103274. https://doi.org/10.1016/j.ejsobi.2020.103274spa
dcterms.bibliographicCitationPalacios-Vargas JG. Biodiversidad de Collembola (Hexapoda: Entognatha) en México. Rev Mex Biodivers. 2014;85:220-31. https://doi.org/10.7550/rmb.32713spa
dcterms.bibliographicCitationPeng Y, Yang W, Yue K, Tan B, Wu F. Impacts of soil fauna on nitrogen and phosphorus release during litter decomposition were differently controlled by plant species and ecosystem type. J For Res. 2019;30:921-30. https://doi.org/10.1007/s11676-018-0664-zspa
dcterms.bibliographicCitationPereira JM, Cardoso E, Brescovit A, Oliveira L, Segat J, Duarte J, Baretta D. Soil spiders (Arachnida: Araneae) in native and reforested Araucaria forests. Sci Agric. 2021;78:e20190198. https://doi.org/10.1590/1678-992X-2019-0198spa
dcterms.bibliographicCitationPhondani PC, Maikhuri RK, Rawat LS, Negi VS. Assessing farmers’ perception on criteria and indicators for sustainable management of indigenous agroforestry systems in Uttarakhand. India. Environ Sustain Indic. 2020;5:100018. https://doi.org/10.1016/j.indic.2019.100018spa
dcterms.bibliographicCitationPielou EC. An introduction to mathematical ecology. New York: John Wiley & Sons; 1969.spa
dcterms.bibliographicCitationPino V, McBratney A, Fajardo M, Wilson N, Deaker R. Understanding soil biodiversity using two orthogonal 1000km transects across new south wales, Australia. Geoderma. 2019;354:113860. https://doi.org/10.1016/j.geoderma.2019.07.018spa
dcterms.bibliographicCitationPrograma de las Naciones Unidas para el Desarrollo - PNUD. Perfil productivo, municipio de Corozal, Sucre. Bogotá: PNUD; 2015.spa
dcterms.bibliographicCitationR Development Core Team. The R project for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014 [cited 2014 Dec 30]. Available from: http://www.R-project.org/.spa
dcterms.bibliographicCitationRepública de Colombia Departamento de Sucre. Plan departamental de extensión agropecuaria Sucre, una gran empresa agroproductiva. Colombia: Gobernación Secretaría de Desarrollo Económico y Medio Ambiente; 2020.spa
dcterms.bibliographicCitationRosa MG, Santos JCP, Brescovit AD, Mafra AL, Baretta D. Spiders (Arachnida:Araneae) in agricultural land use systems in subtropical environments. Rev Bras Cienc Solo. 2018;42:e0160576. https://doi.org/10.1590/18069657rbcs20160576spa
dcterms.bibliographicCitationRossi J-P, Blanchart E. Seasonal and land-use induced variations of soil macrofauna composition in the Western Ghats, southern India. Soil Biol Biochem. 2005;37:1093-104. https://doi.org/10.1016/j.soilbio.2004.11.008spa
dcterms.bibliographicCitationRoyero-Mesino SY. Macrofauna edáfica y características físicas y químicas del suelo en áreas con diferentes sistemas de manejo en el departamento del Atlántico. Colombia: Universidad Nacional de Colombia; 2019.spa
dcterms.bibliographicCitationSafaei M, Bashari H, Mosaddeghi MR, Jafari R. Assessing the impacts of land use and land cover changes on soil functions using landscape function analysis and soil quality indicators in semi-arid natural ecosystems. Catena. 2019;177:260-71. https://doi.org/10.1016/j.catena.2019.02.021spa
dcterms.bibliographicCitationShannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.xspa
dcterms.bibliographicCitationSimó M, Laborda A, Caroilna J, Castro M. Las arañas en agroecosistemas: Bioindicadores terrestres de calidad ambiental. Innotec. 2011;6:51-5. https://doi.org/10.26461/06.11spa
dcterms.bibliographicCitationSimpson EH. Measurement of diversity. Nature. 1949;163:688. https://doi.org/10.1038/163688a0spa
dcterms.bibliographicCitationSlaughter L. Rhizosphere. In: Gentry TJ, Fuhrmann JJ, Zuberer DA, editors. Principles and applications of soil microbiology. United States: Elsevier; 2021. p. 269-301.spa
dcterms.bibliographicCitationStanturf JA, Palik BJ, Dumroese RK. Contemporary forest restoration: A review emphasizing function. For Ecol Manag. 2014;331:292-323. https://doi.org/10.1016/j.foreco.2014.07.029spa
dcterms.bibliographicCitationTantachasatid P, Boyer J, Thanisawanyankura S, Séguy L, Sajjaphan K. Soil macrofauna communities under plant cover in a no-till system in Thailand. Agric Nat Resour. 2017;51:1-6. https://doi.org/10.1016/j.anres.2016.08.004spa
dcterms.bibliographicCitationTerrado R, Pasulka AL, Lie AA, Orphan VJ, Heidelberg KB, Caron DA. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISME J. 2017;11:2022-34. https://doi.org/10.1038/ismej.2017.68spa
dcterms.bibliographicCitationTibbett M, Gil-Martínez M, Fraser T, Green ID, Duddigan S, De Oliveira VH, Raulund-Rasmussen K, Sizmur T, Diaz A. Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena. 2019;180:401-15. https://doi.org/10.1016/j.catena.2019.03.013spa
dcterms.bibliographicCitationTravez KA. Diversidad de los macroinvertebrados edáficos y su relación con la calidad del suelo en un gradiente de intensidad de uso de la tierra en La Esperanza-Pedro Moncayo-Ecuador. Ecuador: Universidad Central del Ecuador; 2020.spa
dcterms.bibliographicCitationTulande M, Barrera-Cataño E, Alonso-Malaver JA, Morantes-Ariza CE, Basto C, Salcedo-Reyes JC. Soil macrofauna in areas with different ages after Pinus patula clearcutting. Univ Sci. 2018;23:383-417. https://doi.org/10.11144/javeriana.sc23-3.smiaspa
dcterms.bibliographicCitationValani GP, Vezzani FM, Cavalieri-Polizeli KMV. Soil quality: Evaluation of on-farm assessments in relation to analytical index. Soil Till Res. 2020;198:104565. https://doi.org/10.1016/j.still.2019.104565spa
dcterms.bibliographicCitationVasu D, Tiwari G, Sahoo S, Dash B, Jangir A, Sharma RP, Naitam R, Tiwary P, Karthikeyan K, Chandran P. A minimum data set of soil morphological properties for quantifying soil quality in coastal agroecosystems. Catena. 2021;198:105042. https://doi.org/10.1016/j.catena.2020.105042spa
dcterms.bibliographicCitationVelasquez E, Lavelle P. Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecol. 2019;100:103446. https://doi.org/10.1016/j.actao.2019.103446spa
dcterms.bibliographicCitationVillarreal-Rosas J, Palacios-Vargas JG, Maya Y. Microarthropod communities related with biological soil crusts in a desert scrub in northwestern Mexico. Rev Mex Biodivers. 2014;85:513-22. https://doi.org/10.7550/rmb.38104spa
dcterms.bibliographicCitationWang C, Zhou X, Guo D, Zhao J, Yan L, Feng G, Gao Q, Yu H, Zhao L. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann Microbiol. 2019;69:1461-73. https://doi.org/10.1007/s13213-019-01529-9spa
dcterms.bibliographicCitationWang S, Chen HYH, Tan Y, Fan H, Ruan H. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Sci Rep. 2016;6:20816. https://doi.org/10.1038/SREP20816spa
dcterms.bibliographicCitationWarner F. Soil fertility, pH, texture and nematodes. Diagnostic services. Michigan: Michigan State University; 2009.spa
dcterms.bibliographicCitationWehr HM, Frank JH. Standard methods for the microbiological examination of dairy products. 17th ed. Washington, DC: American Public Health Association; 2004.spa
dcterms.bibliographicCitationXia T, Li L, Li B, Dou P, Yang H. Heterotrophic bacteria play an important role in endemism of Cephalostachyum pingbianense, a full-year shooting woody bamboo. Forests. 2022;13:121. https://doi.org/10.3390/f13010121spa
dcterms.bibliographicCitationZavaleta MA. Macrofauna y propiedades físicas y químicas del suelo en cultivos de café del Distrito de Jepelacio- Moyobamba. Perú: Universidad Nacional de Trujillo; 2019.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.36783/18069657rbcs20210132
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85136780572&doi=10.36783%2f18069657rbcs20210132&origin=inward&txGid=82290980cee0656ca46f443049250b94
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordssoil qualityspa
dc.subject.keywordsagricultural unitsspa
dc.subject.keywordssustainable systemsspa
dc.subject.keywordsland-usespa
dc.subject.keywordsconservationspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineBiologíaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por