Mostrar el registro sencillo del ítem

dc.contributor.authorMendoza, Dary
dc.contributor.otherArias, Juan Pablo
dc.contributor.otherCuaspud, Olmedo
dc.contributor.otherRuiz, Orlando
dc.contributor.otherArias, Mario
dc.date.accessioned2022-11-15T19:44:55Z
dc.date.available2022-11-15T19:44:55Z
dc.date.issued2020-08-10
dc.date.submitted2020-01-31
dc.identifier.urihttps://hdl.handle.net/20.500.12834/851
dc.description.abstractPlant cell suspension culture of T. peruviana is a feasible biotechnological platform for the production of secondary metabolites with anti-proliferative/cytotoxic activity, as phenolic compounds (PC); however, different in in vitro growth conditions may affect the production, demanding strategies to increase the metabolite biosynthesis, as well as the development of sensitive and rapid analytical methods for metabolite monitoring. The Fourier transform near-infrared (FT-NIR) spectroscopy and Reversed-phase high-performance liquid chromatography (RP-HPLC) combined with Multivariate analysis (MVA) were used to detect significant differences in the PC production in cultures treated with two elicitors. The results suggest that the FT-NIR-MVA is useful for discriminating samples according to the treatment, showed significant influence of the PC signal. RP-HPLC-MVA showed that the elicitor effect occurs at 72 h post-elicitation. Detection of dihydroquercetin (maximum concentration = 12.59 mg/L), a flavonoid with anti-cancer properties, is highlighted. Future studies will be aimed at scaling this culture to increase the productivity of dihydroquercetin.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceBiotechnology Reportsspa
dc.titleFT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonatespa
dcterms.bibliographicCitation[1] S. Ramachandra Rao, G.A. Ravishankar, Plant cell cultures: chemical factories of secondary metabolites, Biotechnol. Adv. 20 (2002) 101–153, doi:http://dx. doi.org/10.1016/S0734-9750(02)00007-1.spa
dcterms.bibliographicCitation[2] R.J. Whitaker, G.C. Hobbib, L.A. Steward, Production of secondary metabolites in plant cell cultures, Biogeneration of Aromas,(1986), pp. 347–362, doi:http:// dx.doi.org/10.1021/bk-1986-0317.ch026spa
dcterms.bibliographicCitation[3] V. Bandara, S.A. Weinstein, J. White, M. Eddleston, A review of the natural history, toxinology, diagnosis and clinical management of Nerium oleander (common oleander) and Thevetia peruviana (yellow oleander) poisoning, Toxicon 56 (2010) 273–281, doi:http://dx.doi.org/10.1016/j. toxicon.2010.03.026.spa
dcterms.bibliographicCitation[4] S. Kohls, B.M. Scholz-Böttcher, J. Teske, P. Zark, J. Rullkötter, Cardiac glycosides from Yellow Oleander (Thevetia peruviana) seeds, Phytochemistry 75 (2012) 114–127, doi:http://dx.doi.org/10.1016/j.phytochem.2011.11.019.spa
dcterms.bibliographicCitation[5] S. Haldar, I. Karmakar, M. Chakraborty, D. Ahmad, P.K. Haldar, Antitumor potential of Thevetia peruviana on Ehrlich’s ascites carcinoma-bearing mice, J. Environ. Pathol. Toxicol. Oncol. 34 (2015) 105–113, doi:http://dx.doi.org/ 10.1615/jenvironpatholtoxicoloncol.2015012017.spa
dcterms.bibliographicCitation[6] A. Ramos-Silva, F. Tavares-Carreón, M. Figueroa, S. De la Torre-Zavala, A. Gastelum-Arellanez, A. Rodríguez-García, L.J. Galán-Wong, H. Avilés-Arnaut, Anticancer potential of Thevetia peruviana fruit methanolic extract, BMC Complement. Altern. Med. 17 (1) (2017) 241, doi:http://dx.doi.org/10.1186/ s12906-017-1727-yspa
dcterms.bibliographicCitation[7] M.M. Hassan, A.K. Saha, S.A. Khan, A. Islam, M. Mahabub-Uz-Zaman, S.S.U. Ahmed, Studies on the antidiarrhoeal, antimicrobial and cytotoxic activities of ethanol-extracted leaves of yellow oleander (Thevetia peruviana), Open Vet. J.1 (1) (2011) 28–31spa
dcterms.bibliographicCitation[8] A. Dixit, H. Singh, R.A. Sharma, A. Sharma, Estimation of antioxidant and antibacterial activity of crude extracts of Thevetia peruviana (Pers.) K. Schum, Int. J. Pharm. 7 (2015) 55–59.spa
dcterms.bibliographicCitation[9] S. Tewtrakul, N. Nakamura, M. Hattori, T. Fujiwara, T. Supavita, Flavanone and flavonol glycosides from the leaves of Thevetia peruviana and their HIV-1 reverse transcriptase and HIV-1 integrase inhibitory activities, Chem. Pharm. Bull. (Tokyo) 50 (2002) 630–635, doi:http://dx.doi.org/10.1248/cpb.50.630spa
dcterms.bibliographicCitation[10] M. Arias, M. Angarita, J.M. Restrepo, L.A. Caicedo, M. Perea, Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana, Vitr. Cell. Dev. Biol. – Plant 46 (2010) 233–238, doi:http://dx.doi.org/10.1007/s11627-009-9249-z.spa
dcterms.bibliographicCitation[11] A.P. Villegas-Quiceño, J.P. Arias-Echeverri, D. Aragón-Mena, S. Ochoa-Cáceres, M.E. Arias-Zabala, Multi-objective optimization in biotechnological processes: application to plant cell suspension cultures of Thevetia peruviana, Rev. Fac. Ing. Univ. Antioquia (2018) 35–40, doi:http://dx.doi.org/10.17533/udea.redin. n87a05.spa
dcterms.bibliographicCitation[12] P. Reymond, E.E. Farmer, Jasmonate and salicylate as global signals for defense gene expression, Curr. Opin. Plant Biol. 1 (1998) 404–411, doi:http://dx.doi.org/ 10.1016/S1369-5266(98)80264-1.spa
dcterms.bibliographicCitation[13] M.I.R. Khan, N.A. Khan, Salicylic acid and Jasmonates: approaches in abiotic stress tolerance, J. Plant Biochem. Physiol.1 (2013) e113, doi:http://dx.doi.org/ 10.4172/2329-9029.1000e113.spa
dcterms.bibliographicCitation[14] I. Rejeb, V. Pastor, B. Mauch-Mani, Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms, Plants 3 (2014) 458–475, doi:http://dx. doi.org/10.3390/plants3040458.spa
dcterms.bibliographicCitation[15] D. Mendoza, O. Cuaspud, J.P. Arias, O. Ruiz, M. Arias, Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana, Biotechnol. Rep. 19 (2018)e00273, doi:http://dx.doi.org/10.1016/j.btre.2018.e00273spa
dcterms.bibliographicCitation[16] D. Granato, P. Putnik, D.B. Kovacevi 9 c, J.S. Santos, V. Calado, R.S. Rocha, A.G. Cruz, B. Jarvis, O.Y. Rodionova, A.L. Pomerantsev, Trends in chemometrics: food authentication, microbiology, and effects of processing, Compr. Rev. Food Sci. Food Saf. 17 (2018) 663–677, doi:http://dx.doi.org/10.1111/1541-4337.12341spa
dcterms.bibliographicCitation[17] K.J. Siebert, Chemometrics in brewing—a review, J. Am. Soc. Brew. Chem. 59 (2001) 147–156, doi:http://dx.doi.org/10.1094/ASBCJ-59-0147.spa
dcterms.bibliographicCitation[18] J. Li, J. Zhang, Y.L. Zhao, H.Y. Huang, Y.Z. Wang, Comprehensive quality assessment based specific chemical profiles for geographic and tissue variation in Gentiana rigescens using HPLC and FTIR method combined with principal component analysis, Front. Chem. 22 (5) (2017) 125, doi:http://dx. doi.org/10.3389/fchem.2017.00125.spa
dcterms.bibliographicCitation[19] X. Chen, N. Gu, C. Xue, B. Li, Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells, Mol. Med. Rep. 17 (2) (2017) 3239–3245, doi:http://dx.doi.org/10.3892/mmr.2017.8271.spa
dcterms.bibliographicCitation[20] Y. Guo, X. Ding, Y. Ni, The combination of NIR spectroscopy and HPLC chromatography for differentiating lotus seed cultivars and quantitative prediction of four main constituents in lotus with the aid of chemometrics, Anal. Methods 9 (2017) 6420–6429, doi:http://dx.doi.org/10.1039/ C7AY02021J.spa
dcterms.bibliographicCitation[21] I. Moreira, I.S. Scarminio, Chemometric discrimination of genetically modified Coffea arabica cultivars using spectroscopic and chromatographic fingerprints, Talanta 107 (2013) 416–422, doi:http://dx.doi.org/10.1016/j. talanta.2013.01.053spa
dcterms.bibliographicCitation[22] M. Zareef, Q. Chen, Q. Ouyang, F.Y.H. Kutsanedzie, M.M. Hassan, A. Viswadevarayalu, A. Wang, Prediction of amino acids, caffeine, theaflavins and water extract in black tea using FT-NIR spectroscopy coupled chemometrics algorithms, Anal. Methods 10 (2018) 3023–3031, doi:http://dx. doi.org/10.1039/C8AY00731Dspa
dcterms.bibliographicCitation[23] S. Diabaté, H. De Franqueville, B. Adon, O. Coulibaly, S. Ake, The role of phenolic compounds in the determination of wilt disease tolerance of oil palm (Elaeis guineensis JACQ), Afr. J. Biotechnol. 8 (2009) 5679–5690spa
dcterms.bibliographicCitation[24] Z. Liu, D. Wang, D. Li, S. Zhang, Quality evaluation of Juniperus rigida Sieb. et Zucc. based on phenolic profiles, bioactivity, and HPLC fingerprint combined with chemometrics, Front. Pharmacol. 8 (2017) 198, doi:http://dx.doi.org/ 10.3389/fphar.2017.00198.spa
dcterms.bibliographicCitation[25] B.T. Borille, M.C.A. Marcelo, R.S. Ortiz, K.C. Mariotti, M.F. Ferrão, R.P. Limberger, Near infrared spectroscopy combined with chemometrics for growth stage classification of cannabis cultivated in a greenhouse from seized seeds, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173 (2017) 318–323, doi: http://dx.doi.org/10.1016/j.saa.2016.09.040spa
dcterms.bibliographicCitation[26] C. Christou, A. Agapiou, R. Kokkinofta, Use of FTIR spectroscopy and chemometrics for the classification of carobs origin, J. Adv. Res. 10 (2018) 1–8, doi:http://dx.doi.org/10.1016/j.jare.2017.12.001spa
dcterms.bibliographicCitation[27] A. Hashimoto, A. Yamanaka, M. Kanou, K. Nakanishi, T. Kameoka, Simple and rapid determination of metabolite content in plant cell culture medium using an FT-IR/ATR method, Bioprocess Biosyst. Eng. 27 (2) (2005) 115–123, doi: http://dx.doi.org/10.1007/s00449-004-0388-7.spa
dcterms.bibliographicCitation[28] A. Hashimoto, K. Nakanishi, Y. Motonaga, T. Kameoka, Sugar metabolic analysis of suspensions of plant cells using an FT-IR/ATR method, Biotechnol. Prog. 17 (3) (2001) 560–564, doi:http://dx.doi.org/10.1021/bp010013w.spa
dcterms.bibliographicCitation[29] R.U. Schenk, A.C. Hildebrandt, Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures, Can. J. Bot. 50 (1972) 199–204, doi:http://dx.doi.org/10.1139/b72-026spa
dcterms.bibliographicCitation[30] Y. Bi, K. Yuan, W. Xiao, J. Wu, C. Shi, J. Xia, G. Chu, G. Zhang, G. Zhou, A local preprocessing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation, Anal. Chim. Acta 909 (2016) 30–40, doi:http://dx.doi.org/10.1016/j.aca.2016.01.010.spa
dcterms.bibliographicCitation[31] J. Bartel, J. Krumsiek, F.J. Theis, Statistical methods for the analysis of highthroughput metabolomics data, Comput. Struct. Biotechnol. J. 4 (2013) e201301009, doi:http://dx.doi.org/10.5936/csbj.201301009.spa
dcterms.bibliographicCitation[32] A. Khoddami, M.A. Wilkes, T.H. Roberts, Techniques for analysis of plant phenolic compounds, Molecules 18 (2) (2013) 2328–2375, doi:http://dx.doi. org/10.3390/molecules18022328spa
dcterms.bibliographicCitation[33] M. Rusilowicz, M. Dickinson, A. Charlton, S. O’Keefe, J. Wilson, A batch correction method for liquid chromatography–mass spectrometry data that does not depend on quality control samples, Metabolomics 12 (3) (2016) 56, doi:http://dx.doi.org/10.1007/s11306-016-0972-2spa
dcterms.bibliographicCitation[34] G. Tomasi, T. Skov, F. Van den Berg, Dynamic time warping (DTW) and correlation optimized warping (COW) [WWW document], Spectrosc. Chemom. Sect. (2004). (accessed 10.1.19) http://www.models.life.ku.dk/ dtw_cow_morespa
dcterms.bibliographicCitation[35] Department of Agriculture, Dr. Duke’s phytochemical and ethnobotanical databases [WWW document], Agric. Res. Serv. (1992), doi:http://dx.doi.org/ 10.15482/USDA.ADC/1239279 (accessed 12.6.18).spa
dcterms.bibliographicCitation[36] Å. Rinnan, F. Berg, S.B. Engelsen, Å. Rinnan, F.V.D. Berg, Review of the most common pre-processing techniques for near-infrared spectra, TrAC Trends Anal. Chem. 28 (2009) 1201–1222, doi:http://dx.doi.org/10.1016/j. trac.2009.07.007spa
dcterms.bibliographicCitation[37] R. Iwamoto, Infrared and Near-Infrared study of the interaction of amide C¼O with water in ideally inert medium, J. Phys. Chem. A 114 (2010) 7398–7407, doi:http://dx.doi.org/10.1021/jp102479t.spa
dcterms.bibliographicCitation[38] W. Li, H. Qu, Rapid quantification of phenolic acids in Radix Salvia Miltrorrhiza extract solutions by FT-NIR spectroscopy in transflective mode, J. Pharm. Biomed. Anal. 52 (2010) 425–431, doi:http://dx.doi.org/10.1016/j. jpba.2010.01.009spa
dcterms.bibliographicCitation[39] B. Worley, R. Powers, PCA as a practical indicator of OPLS-DA model reliability, Curr. Metabolomics 4 (2) (2016) 97–103, doi:http://dx.doi.org/10.2174/ 2213235X04666160613122429.spa
dcterms.bibliographicCitation[40] C. Cordella, I. Moussa, A.-C. Martel, N. Sbirrazzuoli, L. Lizzani-Cuvelier, Recent developments in food characterization and adulteration detection: techniqueoriented perspectives, J. Agric. Food Chem. 50 (7) (2002) 1751–1764, doi: http://dx.doi.org/10.1021/jf011096zspa
dcterms.bibliographicCitation[41] D. Cozzolino, Near infrared spectroscopy in natural products analysis, Planta Med. 75 (7) (2009) 746–756, doi:http://dx.doi.org/10.1055/s-0028-1112220.spa
dcterms.bibliographicCitation[42] M. Blanco, I. Villarroya, NIR spectroscopy: a rapid-response analytical tool, TrAC Trends Anal. Chem. 21 (4) (2002) 240–250, doi:http://dx.doi.org/10.1016/ S0165-9936(02)00404-1spa
dcterms.bibliographicCitation[43] D. Cozzolino, L. Flood, J. Bellon, M. Gishen, M. De Barros Lopes, Combining near infrared spectroscopy and multivariate analysis as a tool to differentiate different strains of Saccharomyces cerevisiae: a metabolomic study, Yeast 23 (14–15) (2016) 1089–1096, doi:http://dx.doi.org/10.1002/yea.1418.spa
dcterms.bibliographicCitation[44] D. Cozzolino, M. Parker, R.G. Dambergs, M. Herderich, M. Gishen, Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale, Biotechnol. Bioeng. 95 (6) (2016) 1101–1107, doi:http://dx.doi.org/10.1002/bit.21067.spa
dcterms.bibliographicCitation[45] C.N.T. Frizon, G.A. Oliveira, C.A. Perussello, P.G. Peralta-Zamora, A.M.O. Camlofski, Ü.B. Rossa, R. Hoffmann-Ribani, Determination of total phenolic compounds in yerba mate (Ilex paraguariensis) combining near infrared spectroscopy (NIR) and multivariate analysis, LWT - Food Sci. Technol. 60 (2015) 795–801, doi:http://dx.doi.org/10.1016/j.lwt.2014.10.030.spa
dcterms.bibliographicCitation[46] H. Hassan, M. Fan, T. Zhang, K. Yang, Prediction of Total phenolics and flavonoids contents in chinese wild rice (Zizania latifolia) Using FT-NIR Spectroscopy, Am. J. Food Technol. 10 (2015) 109–117, doi:http://dx.doi.org/ 10.3923/ajft.2015.109.117spa
dcterms.bibliographicCitation[47] L. Baiyi, C. Jianyang, H. Weisu, W. Di, X. Wei, X. Qing, Y. Xiao, L. Lanjuan, Determination of flavonoids and phenolic acids in the extract of bamboo leaves using near-infrared spectroscopy and multivariate calibration, Afr. J. Biotechnol. 10 (2011) 8448–8455, doi:http://dx.doi.org/10.5897/AJB11.320spa
dcterms.bibliographicCitation[48] C. Sunil, B. Xu, An insight into the health-promoting effects of taxifolin (dihydroquercetin), Phytochemistry 166 (2019)112066, doi:http://dx.doi.org/ 10.1016/j.phytochem.2019.112066spa
dcterms.bibliographicCitation[49] F. Topal, M. Nar, H. Gocer, P. Kalin, U.M. Kocyigit, _ I. Gülçin, S.H. Alwasel, Antioxidant activity of taxifolin: an activity–structure relationship, J. Enzyme Inhib. Med. Chem. 31 (2016) 674–683, doi:http://dx.doi.org/10.3109/ 14756366.2015.1057723spa
dcterms.bibliographicCitation[50] X. Xie, J. Feng, Z. Kang, S. Zhang, L. Zhang, Y. Zhang, X. Li, Y. Tang, Taxifolin protects RPE cells against oxidative stress-induced apoptosis, Mol. Vis. 23 (2017) 520–528spa
dcterms.bibliographicCitation[51] P. Chen, D. Luthriau, Pde B. Harringtonohio, J.M. Harnly, Discrimination among Panax species using spectral fingerprinting, J. AOAC Int. 94 (2011) 1411–1421, doi:http://dx.doi.org/10.5740/jaoacint.10-291.spa
dcterms.bibliographicCitation[52] X. Sun, R.C. Chen, Z.H. Yang, G.B. Sun, M. Wang, X.J. Ma, L.J. Yang, X.B. Sun, Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis, Food Chem. Toxicol. 63 (2014) 221–232, doi:http://dx.doi.org/10.1016/j.fct.2013.11.013.spa
dcterms.bibliographicCitation[53] N. Vargas-Mendoza, E. Madrigal-Santillán, A. Morales-Gonzales, J. EsquivelSoto, C. Esquivel-Chirino, M. Garcia-Luna, M. Gonzales-Rubio, J.A. Gayosso-deLucio, J.A. Morales-Gonzales, Hepatoprotective effect of silymarin, World J. Hepatol. 6 (2014) 144, doi:http://dx.doi.org/10.4254/wjh.v6.i3.144.spa
dcterms.bibliographicCitation[54] H. Guo, X. Zhang, Y. Cui, H. Zhou, D. Xu, T. Shan, F. Zhang, Y. Guo, Y. Chen, D. Wu, Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload, Toxicol. Appl. Pharmacol. 287 (2015) 168–177, doi:http://dx.doi.org/10.1016/j.taap.2015.06.002.spa
dcterms.bibliographicCitation[55] S.Y. Park, H.Y. Kim, H.J. Park, H.K. Shin, K.W. Hong, C.D. Kim, Concurrent treatment with taxifolin and cilostazol on the lowering of β-amyloid accumulation and neurotoxicity via the suppression of P-JAK2/P-STAT3/NFkB/BACE1 signaling pathways, PLoS One 11 (2016)e0168286, doi:http://dx.doi. org/10.1371/journal.pone.0168286spa
dcterms.bibliographicCitation[56] S. Saito, Y. Yamamoto, T. Maki, Y. Hattori, H. Ito, K. Mizuno, M. Harada-Shiba, R. N. Kalaria, M. Fukushima, R. Takahashi, M. Ihara, Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy, Acta Neuropathol. Commun. 5 (1) (2017) 26, doi: http://dx.doi.org/10.1186/s40478-017-0429-5spa
dcterms.bibliographicCitation[57] A.E. Weidmann, Dihydroquercetin: more than just an impurity? Eur. J. Pharmacol. 684 (1-3) (2012) 19–26, doi:http://dx.doi.org/10.1016/j. ejphar.2012.03.035spa
dcterms.bibliographicCitation[58] A. Farah, T. de Paulis, L.C. Trugo, P.R. Martin, Effect of roasting on the formation of chlorogenic acid lactones in Coffee, J. Agric. Food Chem. 53 (2005) 1505– 1513, doi:http://dx.doi.org/10.1021/jf048701t.spa
dcterms.bibliographicCitation[59] M.H. Kweon, H.J. Hwang, H.C. Sung, Identification and antioxidant activity of novel Chlorogenic acid derivatives from Bamboo (Phyllostachys edulis), J. Agric. Food Chem. 49 (2001) 4646–4655, doi:http://dx.doi.org/10.1021/jf010514x.spa
dcterms.bibliographicCitation[60] Y.J. Liu, C.Y. Zhou, C.H. Qiu, X.M. Lu, Y.T. Wang, Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL-60 cells, Mol. Med. Rep. 8 (2013) 1106–1110, doi:http://dx.doi. org/10.3892/mmr.2013.1652.spa
dcterms.bibliographicCitation[61] H.C. Kwon, C.M. Jung, C.G. Shin, J.K. Lee, S.U. Choi, S.Y. Kim, K.R. Lee, A new caffeoyl quinic acid from Aaster scaber and its inhibitory activity against Human Immunodeficiency Virus-1(HIV-1) Integrase, Chem. Pharm. Bull. (Tokyo) 48 (11) (2000) 1796–1798, doi:http://dx.doi.org/10.1248/cpb.48.1796.spa
dcterms.bibliographicCitation[62] A.S. Cho, S.M. Jeon, M.J. Kim, J. Yeo, K.I. Seo, M.S. Choi, M.K. Lee, Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice, Food Chem. Toxicol. 48 (3) (2010) 937–943, doi: http://dx.doi.org/10.1016/j.fct.2010.01.003spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.btre.2020.e00519
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsThevetia peruviana Plant cell culture FT-NIR RP-HPLC Multivariate analysisspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por