Mostrar el registro sencillo del ítem

dc.contributor.authorPuello-Polo, Esneyder
dc.contributor.otherPájaro, Yina
dc.contributor.otherMárquez, Edgar
dc.date.accessioned2022-11-15T19:44:48Z
dc.date.available2022-11-15T19:44:48Z
dc.date.issued2020-08-07
dc.date.submitted2020-07-04
dc.identifier.urihttps://hdl.handle.net/20.500.12834/850
dc.description.abstractThe effect of Ga and V as support-modifier and promoter of NiMoV/Al2O3-Ga2O3 catalyst on hydrogenation (HYD) and hydrodesulfurization (HDS) activities was studied. The catalysts were characterized by elemental analysis, textural properties, XRD, XPS, EDS elemental mapping and High-resolution transmission electron microscopy (HRTEM). The chemical analyses by X-ray Fluorescence (XRF) and CHNS-O elemental analysis showed results for all compounds in agreement, within experimental accuracy, according to stoichiometric values proposed to Mo/Ni = 6 and (V+Ni)/(V+Ni+Mo) = 0.35. The sol-gel synthesis method increased the surface area by incorporation of Ga3+ ions into the Al2O3 forming Ga-O-Al bonding; whereas the impregnation synthesis method leads to decrease by blocking of alumina pores, as follows NiMoV/Al-Ga(1%-I)< NiMoV/Al-Ga(1%-SG) < NiMo/Al2O3 < Al2O3-Ga2O3(1%-I) < Al2O3-Ga2O3(1%-SG) < Al2O3, propitiating Dp-BJH between 6.18 and 7.89 nm. XRD confirmed a bulk structure typical of (NH4)4[NiMo6O24H6]•5H2O and XPS the presence at the surface of Mo4+, Mo6+, NixSy, Ni2+, Ga3+ and V5+ species, respectively. The EDS elemental mapping confirmed that Ni, Mo, Al, Ga, V and S are well-distributed on Al2O3-Ga2O3(1%-SG) support. The HRTEM analysis shows that the length and stacking distribution of MoS2 crystallites varied from 5.07 to 5.94 nm and 2.74 to 3.58 with synthesis method (SG to I). The results of the characterization sulfided catalysts showed that the synthesis method via impregnation induced largest presence of gallium on the surface influencing the dispersion V5+ species, this effect improves the dispersion of the MoS2 phase and increasing the number of active sites, which correlates well with the dibenzothiophene HDS and naphthalene HYD activities. The dibenzothiophene HDS activities with overall pseudo-first-order rate constants’ values (kHDS) from 1.65 to 7.07 L/(h·mol·m2 ) follow the order: NiMoV-S/Al-Ga(1%-I) < NiMo-S/Al2O3 < NiMoV-S/Al-Ga(1%-SG), whereas the rate constants’ values (k) of naphthalene HYD from 0.022 to 2.23 L/(h·mol·m2 ) as follow: NiMoV-S/Al-Ga(1%-SG) < NiMo-S/Al2O3 < NiMoV-S/Al-Ga(1%-I). We consider that Ga and V act as structural promoters in the NiMo catalysts supported on Al2O3 that allows the largest generation of BRIM sites for HYD and CUS sites for DDS.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceCatalystsspa
dc.titleEffect of the Gallium and Vanadium on the Dibenzothiophene Hydrodesulfurization and Naphthalene Hydrogenation Activities Using Sulfided NiMo-V2O5/Al2O3-Ga2O3spa
dcterms.bibliographicCitation1. Anderson, J.R.; Boudart, M. Catalysis: Science and Technology; Springer: Berlin/Heidelberg, Germany, 1996; ISBN 978-3-642-61040-0.spa
dcterms.bibliographicCitation2. Ras, eev, S.D. Thermal and Catalytic Processes in Petroleum Refining; Marcel Dekker: New York, NY, USA, 2003; ISBN 978-0-8247-0952-5.spa
dcterms.bibliographicCitation3. Lødeng, R.; Hannevold, L.; Bergem, H.; Stöcker, M. Catalytic Hydrotreatment of Bio-Oils for High-Quality Fuel Production. In The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals; Triantafyllidis, K.S., Lappas, A.A., Stöcker, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Chapter 11; pp. 351–396. ISBN 978-0-444-56330-9.spa
dcterms.bibliographicCitation4. Debecker, D.P.; Stoyanova, M.; Rodemerck, U.; Gaigneaux, E.M. Preparation of MoO3 /SiO2–Al2O3 metathesis catalysts via wet impregnation with different Mo precursors. J. Mol. Catal. Chem. 2011, 340, 65–76.spa
dcterms.bibliographicCitation5. Topsøe, H.; Clausen, B.S. Active sites and support effects in hydrodesulfurization catalysts. Appl. Catal. 1986, 25, 273–293spa
dcterms.bibliographicCitation6. Chianelli, R.R.; Siadati, M.H.; De la Rosa, M.P.; Berhault, G.; Wilcoxon, J.P.; Bearden, R.; Abrams, B.L. Catalytic Properties of Single Layers of Transition Metal Sulfide Catalytic Materials. Catal. Rev. 2006, 48, 1–41.spa
dcterms.bibliographicCitation7. Babich, I. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel 2003, 82, 607–631spa
dcterms.bibliographicCitation8. Ministerio de Ambiente y Desarrollo Sostenible, y Ministerio de Minas y Energías. Resolución 40619 2017 pág 1-3; Resolución 90963 2014, 5.spa
dcterms.bibliographicCitation9. Gutiérrez, O.Y.; Klimova, T. Effect of the support on the high activity of the (Ni)Mo/ZrO2–SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4,6-DMDBT. J. Catal. 2011, 281, 50–62.spa
dcterms.bibliographicCitation10. Rashidi, F.; Sasaki, T.; Rashidi, A.M.; Nemati Kharat, A.; Jozani, K.J. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity. J. Catal. 2013, 299, 321–335spa
dcterms.bibliographicCitation11. Chianelli, R.R. Fundamental Studies of Transition Metal Sulfide Hydrodesulfurization Catalysts. Catal. Rev. 1984, 26, 361–393.spa
dcterms.bibliographicCitation12. Topsøe, H.; Clausen, B.S.; Massoth, F.E. Hydrotreating Catalysis. In Catalysis; Anderson, J.R., Boudart, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1–269. ISBN 978-3-642-64666-9spa
dcterms.bibliographicCitation13. Breysse, M.; Portefaix, J.L.; Vrinat, M. Support effects on hydrotreating catalysts. Catal. Today 1991, 10, 489–505spa
dcterms.bibliographicCitation14. Palcheva, R.; Kaluža, L.; Spojakina, A.; Jirátová, K.; Tyuliev, G. NiMo/γ-Al2O3 Catalysts from Ni Heteropolyoxomolybdate and Effect of Alumina Modification by B, Co, or Ni. Chin. J. Catal. 2012, 33, 952–961.spa
dcterms.bibliographicCitation15. Jirátová, K.; Kraus, M. Effect of support properties on the catalytic activity of HDS catalysts. Appl. Catal. 1986, 27, 21–29spa
dcterms.bibliographicCitation16. Saini, A.R.; Johnson, B.G.; Massoth, F.E. Studies of molybdena—Alumina catalysts XIV. Effect of Cation-Modified Aluminas. Appl. Catal. 1988, 40, 157–172spa
dcterms.bibliographicCitation17. Strohmeier, B. Surface spectroscopic characterization of the interaction between zinc ions and $gamma;-alumina. J. Catal. 1984, 86, 266–279spa
dcterms.bibliographicCitation18. Cabello, C.I.; Botto, I.L.; Thomas, H.J. Anderson type heteropolyoxomolybdates in catalysis:: 1. (NH4)3[CoMo6O24H6]·7H2O/γ-Al2O3 as alternative of Co-Mo/γ-Al2O3 hydrotreating catalysts. Appl. Catal. Gen. 2000, 197, 79–86spa
dcterms.bibliographicCitation19. Cabello, C.I.; Cabrerizo, F.M.; Alvarez, A.; Thomas, H.J. Decamolybdodicobaltate(III) heteropolyanion: Structural, spectroscopical, thermal and hydrotreating catalytic properties. J. Mol. Catal. Chem. 2002, 186, 89–100spa
dcterms.bibliographicCitation20. Altamirano, E.; de los Reyes, J.A.; Murrieta, F.; Vrinat, M. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over Co(Ni)MoS2 catalysts supported on alumina: Effect of gallium as an additive. Catal. Today 2008, 133–135, 292–298spa
dcterms.bibliographicCitation21. Díaz de León, J.N.; Picquart, M.; Massin, L.; Vrinat, M.; de los Reyes, J.A. Hydrodesulfurization of sulfur refractory compounds: Effect of gallium as an additive in NiWS/γ-Al2O3 catalysts. J. Mol. Catal. Chem. 2012, 363–364, 311–321spa
dcterms.bibliographicCitation22. Cimino, A.; Lo Jacono, M.; Schiavello, M. Effect of zinc, gallium, and germanium ions on the structural and magnetic properties of nickel ions supported on alumina. J. Phys. Chem. 1975, 79, 243–249.spa
dcterms.bibliographicCitation23. Zepeda, T.A.; Pawelec, B.; Díaz de León, J.N.; de los Reyes, J.A.; Olivas, A. Effect of gallium loading on the hydrodesulfurization activity of unsupported Ga2S3/WS2 catalysts. Appl. Catal. B Environ. 2012, 111–112, 10–19.spa
dcterms.bibliographicCitation24. Petre, A.L.; Auroux, A.; Gervasini, A.; Caldararu, M.; Ionescu, N.I. Calorimetric Characterization of Surface Reactivity of Supported Ga2O3 Catalysts. J. Therm. Anal. Calorim. 2001, 64, 253–260spa
dcterms.bibliographicCitation25. Dejonghe, S.; Hubaut, R.; Grimblot, J.; Bonnelle, J.P.; Des Courieres, T.; Faure, D. Hydrodemetallation of a vanadylporphyrin over sulfided NiMoγAl2O3 , MoγAl2O3 , and γAl2O3 catalysts—Effect of the vanadium deposit on the toluene hydrogenation. Catal. Today 1990, 7, 569–585spa
dcterms.bibliographicCitation26. Rankel, L.; Rollmann, L. Catalytic activity of metals in petroleum and their removal. Fuel 1983, 62, 44–46spa
dcterms.bibliographicCitation27. Lacroix, M.; Boutarfa, N.; Guillard, C.; Vrinat, M.; Breysse, M. Hydrogenating properties of unsupported transition metal sulphides. J. Catal. 1989, 120, 473–477spa
dcterms.bibliographicCitation28. Betancourt, P.; Rives, A.; Scott, C.E.; Hubaut, R. Hydrotreating on mixed vanadium–nickel sulphides. Catal. Today 2000, 57, 201–207spa
dcterms.bibliographicCitation29. Betancourt, P.; Marrero, S.; Pinto-Castilla, S. V–Ni–Mo sulfide supported on Al2O3 : Preparation, characterization and LCO hydrotreating. Fuel Process. Technol. 2013, 114, 21–25spa
dcterms.bibliographicCitation30. Escalante, Y.; Méndez, F.J.; Díaz, Y.; Inojosa, M.; Morgado, M.; Delgado, M.; Bastardo-González, E.; Brito, J.L. MCM-41-supported vanadium catalysts structurally modified with Al or Zr for thiophene hydrodesulfurization. Appl. Petrochem. Res. 2019, 9, 47–55spa
dcterms.bibliographicCitation31. Ayala-G, M.; Puello, E.; Quintana, P.; González-García, G.; Diaz, C. Comparison between alumina supported catalytic precursors and their application in thiophene hydrodesulfurization: (NH4 ) [NiMo6O24H6 ]·5H2O/γ-Al2O3 and NiMoOx/γ-Al2O3 conventional systems. RSC Adv. 2015, 5, 102652–102662spa
dcterms.bibliographicCitation32. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069spa
dcterms.bibliographicCitation33. Sampieri, A.; Pronier, S.; Brunet, S.; Carrier, X.; Louis, C.; Blanchard, J.; Fajerwerg, K.; Breysse, M. Formation of heteropolymolybdates during the preparation of Mo and NiMo HDS catalysts supported on SBA-15: Influence on the dispersion of the active phase and on the HDS activity. Microporous Mesoporous Mater. 2010, 130, 130–141spa
dcterms.bibliographicCitation34. Haneda, M.; Kintaichi, Y.; Shimada, H.; Hamada, H. Selective Reduction of NO with Propene over Ga2O3–Al2O3: Effect of Sol–Gel Method on the Catalytic Performance. J. Catal. 2000, 192, 137–148spa
dcterms.bibliographicCitation35. Ueno, A.; Suzuki, H.; Kotera, Y. Particle-size distribution of nickel dispersed on silica and its effects on hydrogenation of propionaldehyde. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens Phases 1983, 79, 127.spa
dcterms.bibliographicCitation36. Puello-Polo, E.; Marquez, E.; Brito, J.L. One-pot synthesis of Nb-modified Al2O3 support for NiMo hydrodesulfurization catalysts. J. Sol-Gel Sci. Technol. 2018, 88, 90–99spa
dcterms.bibliographicCitation37. International Centre for Diffraction Data®(ICDD®). Power Diffraction File; ICDD: Newtown Square, PA, USA, 1995spa
dcterms.bibliographicCitation38. Galtayries, A.; Wisniewski, S.; Grimblot, J. Formation of thin oxide and sulphide films on polycrystalline molybdenum foils: Characterization by XPS and surface potential variations. J. Electron Spectrosc. Relat. Phenom. 1997, 87, 31–44spa
dcterms.bibliographicCitation39. Weber, T.; Muijsers, J.C.; van Wolput, J.H.M.C.; Verhagen, C.P.J.; Niemantsverdriet, J.W. Basic Reaction Steps in the Sulfidation of Crystalline MoO3 to MoS2 , As Studied by X-ray Photoelectron and Infrared Emission Spectroscopy. J. Phys. Chem. 1996, 100, 14144–14150spa
dcterms.bibliographicCitation40. Aigler, J.M.; Brito, J.L.; Leach, P.A.; Houalla, M.; Proctor, A.; Cooper, N.J.; Hall, W.K.; Hercules, D.M. ESCA study of “model” allyl-based molybdenum/silica catalysts. J. Phys. Chem. 1993, 97, 5699–5702.spa
dcterms.bibliographicCitation41. Le, Z.; Afanasiev, P.; Li, D.; Long, X.; Vrinat, M. Solution synthesis of the unsupported Ni–W sulfide hydrotreating catalysts. Catal. Today 2008, 130, 24–31spa
dcterms.bibliographicCitation42. Wang, X.; Ozkan, U.S. Characterization of Active Sites over Reduced Ni−Mo/Al2O3 Catalysts for Hydrogenation of Linear Aldehydes. J. Phys. Chem. B 2005, 109, 1882–1890spa
dcterms.bibliographicCitation43. Schön, G. Auger and direct electron spectra in X-ray photoelectron studies of zinc, zinc oxide, gallium and gallium oxide. J. Electron Spectrosc. Relat. Phenom. 1973, 2, 75–86spa
dcterms.bibliographicCitation44. Escaño, M.C.S.; Asubar, J.T.; Yatabe, Z.; David, M.Y.; Uenuma, M.; Tokuda, H.; Uraoka, Y.; Kuzuhara, M.; Tani, M. On the presence of Ga2O sub-oxide in high-pressure water vapor annealed AlGaN surface by combined XPS and first-principles methods. Appl. Surf. Sci. 2019, 481, 1120–1126spa
dcterms.bibliographicCitation45. Rakmae, S.; Osakoo, N.; Pimsuta, M.; Deekamwong, K.; Keawkumay, C.; Butburee, T.; Faungnawakij, K.; Geantet, C.; Prayoonpokarach, S.; Wittayakun, J.; et al. Defining nickel phosphides supported on sodium mordenite for hydrodeoxygenation of palm oil. Fuel Process. Technol. 2020, 198, 106236spa
dcterms.bibliographicCitation46. Li, M.; Li, H.; Jiang, F.; Chu, Y.; Nie, H. The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts. Catal. Today 2010, 149, 35–39spa
dcterms.bibliographicCitation47. Liu, H.; Liu, C.; Yin, C.; Liu, B.; Li, X.; Li, Y.; Chai, Y.; Liu, Y. Low temperature catalytic hydrogenation naphthalene to decalin over highly-loaded NiMo, NiW and NiMoW catalysts. Catal. Today 2016, 276, 46–54spa
dcterms.bibliographicCitation48. Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380.spa
dcterms.bibliographicCitation49. Farojr, A.; Dossantos, A. Cumene hydrocracking and thiophene HDS on niobia-supported Ni, Mo and Ni–Mo catalysts. Catal. Today 2006, 118, 402–409spa
dcterms.bibliographicCitation50. Froment, G.F.; De Wilde, J.; Bischoff, K.B. Chemical Reactor Analysis and Design, 3rd ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-56541-4spa
dcterms.bibliographicCitation51. Moulijn, J.A.; Tarfaoui, A.; Kapteijn, F. General aspects of catalyst testing. Catal. Today 1991, 11, 1–12spa
dcterms.bibliographicCitation52. Farag, H. Kinetic Analysis of the Hydrodesulfurization of Dibenzothiophene: Approach Solution to the Reaction Network. Energy Fuels 2006, 20, 1815–1821spa
dcterms.bibliographicCitation53. Vargas-Villagrán, H.; Ramírez-Suárez, D.; Ramírez-Muñoz, G.; Calzada, L.A.; González-García, G.; Klimova, y.T.E. Tuning of activity and selectivity of Ni/(Al)SBA-15 catalysts in naphthalene hydrogenation. Catal. Today 2019, S0920586119305103spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/catal10080894
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsgallium; vanadium; hydrodesulfurization; hydrogenation; synthesis methodspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineQuímicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por