Mostrar el registro sencillo del ítem
Acrylic Bone Cements Modified with Graphene Oxide: Mechanical, Physical, and Antibacterial Properties
dc.contributor.author | Valencia Zapata, Mayra Eliana | |
dc.contributor.other | Ruiz Rojas, Lina Marcela | |
dc.contributor.other | Mina Hernández, José Herminsul | |
dc.contributor.other | Delgado-Ospina, Johannes | |
dc.contributor.other | Grande Tovar, Carlos David | |
dc.date.accessioned | 2022-11-15T19:44:40Z | |
dc.date.available | 2022-11-15T19:44:40Z | |
dc.date.issued | 2020-08-07 | |
dc.date.submitted | 2020-07-22 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/849 | |
dc.description.abstract | Bacterial infections are a common complication after total joint replacements (TJRs), the treatment of which is usually based on the application of antibiotic-loaded cements; however, owing to the increase in antibiotic-resistant microorganisms, the possibility of studying new antibacterial agents in acrylic bone cements (ABCs) is open. In this study, the antibacterial effect of formulations of ABCs loaded with graphene oxide (GO) between 0 and 0.5 wt.% was evaluated against Gram-positive bacteria: Bacillus cereus and Staphylococcus aureus, and Gram-negative ones: Salmonella enterica and Escherichia coli. It was found that the effect of GO was dependent on the concentration and type of bacteria: GO loadings ≥0.2 wt.% presented total inhibition of Gram-negative bacteria, while GO loadings ≥0.3 wt.% was necessary to achieve the same effect with Gram-positives bacteria. Additionally, the evaluation of some physical and mechanical properties showed that the presence of GO in cement formulations increased wettability by 17%, reduced maximum temperature during polymerization by 19%, increased setting time by 40%, and increased compressive and flexural mechanical properties by up to 17%, all of which are desirable behaviors in ABCs. The formulation of ABC loading with 0.3 wt.% GO showed great potential for use as a bone cement with antibacterial properties. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Polymers | spa |
dc.title | Acrylic Bone Cements Modified with Graphene Oxide: Mechanical, Physical, and Antibacterial Properties | spa |
dcterms.bibliographicCitation | 1. Eil Bakhtiari, S.S.; Bakhsheshi-Rad, H.R.; Karbasi, S.; Tavakoli, M.; Razzaghi, M.; Fauzi Ismail, A.; Ramakrishna, S.; Berto, F. Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties. Polymers 2020, 12, 1469. | spa |
dcterms.bibliographicCitation | 2. Tavakoli, M.; Bakhtiari, S.S.E.; Karbasi, S. Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation. Int. J. Biol. Macromol. 2020, 149, 783–793 | spa |
dcterms.bibliographicCitation | 3. Vazquez-Lasa, B. Poly(methylmethacrylate) Bone Cement: Chemical Composition and Chemistry. In Orthopaedic Bone Cements; Deb, S., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2008. | spa |
dcterms.bibliographicCitation | 4. Dunne, N.J.; Orr, J.F.; Road, S.; Ireland, N. Curing characteristics of acrylic bone cement. J. Mater. Sci. Mater. Med. 2002, 13, 17–22. | spa |
dcterms.bibliographicCitation | 5. Shen, S.-C.; Ng, W.K.; Dong, Y.-C.; Ng, J.; Tan, R.B.H. Nanostructured material formulated acrylic bone cements with enhanced drug release. Mater. Sci. Eng. C 2016, 58, 233–241 | spa |
dcterms.bibliographicCitation | 6. Magnan, B.; Bondi, M.; Maluta, T.; Samaila, E.; Schirru, L.; Dall’Oca, C. Acrylic bone cement: Current concept review. Musculoskelet. Surg. 2013, 97, 93–100 | spa |
dcterms.bibliographicCitation | 7. Maleki Dizaj, S.; Mennati, A.; Jafari, S.; Khezri, K.; Adibkia, K. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 2015, 5, 19–23. | spa |
dcterms.bibliographicCitation | 8. Lu, N.; Li, Z. Chapter 5. Graphene Oxide: Theoretical Perspectives. In Quantum Simulations of Materials and Biological Systems; Springer: Dordrecht, The Netherlands, 2012; pp. 69–84. | spa |
dcterms.bibliographicCitation | 9. Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323. | spa |
dcterms.bibliographicCitation | 10. Mukherjee, S.P.; Gliga, A.R.; Lazzaretto, B.; Brandner, B.; Fielden, M.; Vogt, C.; Newman, L.; Rodrigues, A.F.; Shao, W.; Fournier, P.M.; et al. Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale 2018, 10, 1180–1188. | spa |
dcterms.bibliographicCitation | 11. Girish, C.M.; Sasidharan, A.; Gowd, G.S.; Nair, S.; Koyakutty, M. Confocal raman imaging study showing macrophage mediated biodegradation of graphene in vivo. Adv. Healthc. Mater. 2013, 2, 1489–1500 | spa |
dcterms.bibliographicCitation | 12. Palmieri, V.; Papi, M.; Conti, C.; Ciasca, G.; Maulucci, G.; De Spirito, M.; Palmieri, V.; Papi, M.; Conti, C.; Ciasca, G.; et al. The future development of bacteria fighting medical devices: The role of graphene oxide The future development of bacteria fighting medical devices: The role of graphene oxide. Expert Rev. Med. Devices 2016, 13, 1013–1019 | spa |
dcterms.bibliographicCitation | 13. Khan, A.A.; Mirza, E.H.; Mohamed, B.A.; El-Sharawy, M.A.; Hasil Al-Asmari, M.; Abdullah Al-Khureif, A.; Ahmad Dar, M.; Vallittu, P.K. Static and dynamic mechanical properties of graphene oxide-based bone cementing agents. J. Compos. Mater. 2019, 53, 2297–2304. | spa |
dcterms.bibliographicCitation | 14. Khan, A.A.; Mirza, E.H.; Mohamed, B.A.; Alharthi, N.H.; Abdo, H.S.; Javed, R.; Alhur, R.S.; Vallittu, P.K. Physical, mechanical, chemical and thermal properties of nanoscale graphene oxide-poly methylmethacrylate composites. J. Compos. Mater. 2018, 52, 2803–2813 | spa |
dcterms.bibliographicCitation | 15. Paz, E.; Forriol, F.; del Real, J.C.; Dunne, N. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications. Mater. Sci. Eng. C 2017, 77, 1003–1011 | spa |
dcterms.bibliographicCitation | 16. Valencia Zapata, M.E.; Mina Hernandez, J.H.; Grande Tovar, C.D.; Valencia Llano, C.H.; Diaz Escobar, J.A.; Vazquez-Lasa, B.; San Roman, J.; Rojo, L. Novel Bioactive and Antibacterial Acrylic Bone Cement Nanocomposites Modified with Graphene Oxide and Chitosan. Int. J. Mol. Sci. 2019, 20, 2938 | spa |
dcterms.bibliographicCitation | 17. Paz, E.; Ballesteros, Y.; Abenojar, J.; Del Real, J.C.; Dunne, N.J. Graphene Oxide and Graphene Reinforced PMMA Bone Cements: Evaluation of Thermal Properties and Biocompatibility. Mol. Divers. Preserv. Int. 2019, 12, 3146 | spa |
dcterms.bibliographicCitation | 18. Mirza, E.H.; Khan, A.A.; Al-Khureif, A.A.; Saadaldin, S.A.; Mohamed, B.A.; Fareedi, F.; Khan, M.M.; Alfayez, M.; Al-Fotawi, R.; Vallittu, P.K.; et al. Characterization of osteogenic cells grown over modified grapheneoxide-biostable polymers. Biomed. Mater. 2019, 14, 065004 | spa |
dcterms.bibliographicCitation | 19. Gonçalves, G.; Portolés, M.-T.; Ramírez-Santillán, C.; Vallet-Regí, M.; Serro, A.P.; Grácio, J.; Marques, P.A.A.P. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations. J. Mater. Sci. Mater. Med. 2013, 24, 2787–2796 | spa |
dcterms.bibliographicCitation | 20. Paz, E.; Ballesteros, Y.; Forriol, F.; Dunne, N.J.; del Real, J.C. Graphene and graphene oxide functionalisation with silanes for advanced dispersion and reinforcement of PMMA-based bone cements. Mater. Sci. Eng. C 2019, 104, 109946 | spa |
dcterms.bibliographicCitation | 21. International Standard ISO 5833: Implants for Surgery-Acrylic Resin Cements; ISO: Geneva, Switzerland, 2002; pp. 1–22 | spa |
dcterms.bibliographicCitation | 22. Muniyalakshmi, M.; Sethuraman, K.; Silambarasan, D. Materials Today: Proceedings Synthesis and characterization of graphene oxide nanosheets. Mater. Today Proc. 2020, 21, 408–410 | spa |
dcterms.bibliographicCitation | 23. Kumar, R.; Kumar, M.; Kumar, A.; Singh, R. Surface modification of Graphene Oxide using Esterification. Mater. Today Proc. 2019, 18, 1556–1561 | spa |
dcterms.bibliographicCitation | 24. Torrisi, L.; Cutroneo, M.; Havranek, V.; Silipigni, L.; Fazio, B.; Fazio, M.; Marco, G.D.; Stassi, A.; Torrisi, A. Self-supporting graphene oxide films preparation and characterization methods. Vacuum 2019, 160, 1–11. | spa |
dcterms.bibliographicCitation | 25. Sharma, R.; Kapusetti, G.; Bhong, S.Y.; Roy, P.; Singh, S.K.; Singh, S.; Balavigneswaran, C.K.; Mahato, K.K.; Ray, B.; Maiti, P.; et al. Osteoconductive Amine-Functionalized Graphene-Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization. Bioconjug. Chem. 2017, 28, 2254–2265 | spa |
dcterms.bibliographicCitation | 26. Gonçalves, G.; Cruz, S.M.A.; Ramalho, A.; Grácio, J.; Marques, P.A.A.P. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Nanoscale 2012, 4, 2937–2945 | spa |
dcterms.bibliographicCitation | 27. Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736. | spa |
dcterms.bibliographicCitation | 28. Perreault, F.; Fonseca de Faria, A.; Nejati, S.; Elimelech, M. Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano 2015, 9, 7226–7236 | spa |
dcterms.bibliographicCitation | 29. Gurunathan, S.; Han, J.W.; Abdal Dayem, A.; Eppakayala, V.; Kim, J.H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 2012, 7, 5901–5914 | spa |
dcterms.bibliographicCitation | 30. Velasco-Soto, M.A.; Pérez-García, S.A.; Alvarez-Quintana, J.; Cao, Y.; Nyborg, L.; Licea-Jiménez, L. Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon N. Y. 2015, 93, 967–973 | spa |
dcterms.bibliographicCitation | 31. Gamze, Z.; Do ˘gan, M. Characterization and thermal kinetic analysis of PMMA/modified-MWCNT nanocomposites. Diam. Relat. Mater. 2020, 108, 107950. | spa |
dcterms.bibliographicCitation | 32. Angelopoulou, A.; Efthimiadou, E.K.; Boukos, N.; Kordas, G. A new approach for the one-step synthesis of bioactive PS vs. PMMA silica hybrid microspheres as potential drug delivery systems. Colloid Surf. B 2014, 117, 322–329 | spa |
dcterms.bibliographicCitation | 33. Alves, F.; Brena, S.; Fontele, C.; Karine, L.; Santos, B.; Alves, L.; Marcelo, J.; Castro, D.; Carlos, J.; Gonçalves, R.; et al. Synthesis, characterization of α -terpineol-loaded PMMA nanoparticles as proposed of therapy for melanoma. Mater. Today Commun. 2020, 22, 100762 | spa |
dcterms.bibliographicCitation | 34. Valencia Zapata, M.E.; Mina Hernandez, J.H.; Grande Tovar, C.D. Acrylic Bone Cement Incorporated with Low Chitosan Loadings. Polymers (Basel) 2020, 12, 1617. | spa |
dcterms.bibliographicCitation | 35. Tadano, T.; Zhu, R.; Suzuki, S.; Hoshi, T.; Sasaki, D.; Hagiwara, T.; Sawaguchi, T. Thermal degradation of transparent poly (methyl methacrylate)/silica nanoparticle hybrid fi lms. Polym. Degrad. Stab. 2014, 109, 7–12 | spa |
dcterms.bibliographicCitation | 36. Xiong, S.Y.; Xu, Y.M.; Jiao, Y.H.; Wang, L.; Li, M.Z. Effects of Gamma Irradiation on the Structure and Mechanical Properties of Wild Silkworms and Bombyx Mori Silk Fibroin Films. Adv. Mater. Res. 2011, 197–198, 27–31. | spa |
dcterms.bibliographicCitation | 37. Kieswetter, K.; Schwartz, Z.; Hummert, T.W.; Cochran, D.L.; Simpson, J.; Dean, D.D.; Boyan, B.D. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J. Biomed. Mater. Res. 1996, 32, 55–63. | spa |
dcterms.bibliographicCitation | 38. Lampin, M.; Legris, C.; Degrange, M.; Sigot-Luizard, M.F.; Warocquier-Clerout, R.; Legris, C.; Degrange, M.; Sigot-Luizard, M.F. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J. Biomed. Mater. Res. 1997, 36, 99–108 | spa |
dcterms.bibliographicCitation | 39. Shen, J.; Shi, M.; Ma, H.; Yan, B.; Li, N.; Hu, Y.; Ye, M. Synthesis of hydrophilic and organophilic chemically modified graphene oxide sheets. J. Colloid Interface Sci. 2010, 351, 366–370 | spa |
dcterms.bibliographicCitation | 40. Sugita, Y.; Okubo, T.; Saita, M.; Ishijima, M.; Rezaei, N.M.; Taniyama, T.; Sato, N.; Saruta, J.; Maeda, H.; Ogawa, T. Novel Osteogenic Behaviors around Hydrophilic and Radical-Free 4-META/MMA-TBB: Implications of an Osseointegrating Bone Cement. Int. J. Mol. Sci. 2020, 21, 2405. | spa |
dcterms.bibliographicCitation | 41. Yoshinari, M.; Wei, J.; Matsuzaka, K.; Inoue, T. Effect of cold plasma-surface modification on surface wettability and initial cell attachment. World Acad. Sci. Eng. Technol. 2009, 58, 171–175. | spa |
dcterms.bibliographicCitation | 42. Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward low-fouling/non-fouling biomaterials. Polymer (Guildf) 2010, 51, 5283–5293 | spa |
dcterms.bibliographicCitation | 43. Lee, J.-H.; Jo, J.-K.; Kim, D.-A.; Dev, K.; Kim, H.-W.; Lee, H. Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dent. Mater. 2018, 34, 63–72 | spa |
dcterms.bibliographicCitation | 44. Ormsby, R.W.; Modreanu, M.; Mitchell, C.A.; Dunne, N.J. Carboxyl functionalised MWCNT/polymethyl methacrylate bone cement for orthopaedic applications. J. Biomater. Appl. 2014, 29, 209–221 | spa |
dcterms.bibliographicCitation | 45. Boner, V.; Kuhn, P.; Mendel, T.; Gisep, A. Temperature Evaluation During PMMA Screw Augmentation in Osteoporotic Bone-An In Vitro Study About the Risk of Thermal Necrosis in Human Femoral Heads. J. Biomed. Mater. Res. Part B 2009, 90B, 842–848 | spa |
dcterms.bibliographicCitation | 46. Verlaan, J.; Oner, F.C.; Verbout, A.J.; Dhert, W.J.A. Temperature Elevation after Vertebroplasty with PolymethylMethacrylate in the Goat Spine. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 67B, 581–585. | spa |
dcterms.bibliographicCitation | 47. Golz, T.; Graham, C.R.; Busch, L.C.; Wulf, J.; Winder, R.J. Temperature elevation during simulated polymethylmethacrylate (PMMA) cranioplasty in a cadaver model. J. Clin. Neurosci. 2010, 17, 617–622 | spa |
dcterms.bibliographicCitation | 48. Pina, S.; Ferreira, J.M.F. Brushite-Forming Mg-, Zn-and Sr-Substituted Bone Cements for Clinical Applications. Materials (Basel) 2010, 3, 519–535 | spa |
dcterms.bibliographicCitation | 49. Baroud, G.; Samara, M.; Steffen, T. Influence of Mixing Method on the Cement Temperature-Mixing Time History and Doughing Time of Three Acrylic Cements for Vertebroplasty. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 68B, 112–116 | spa |
dcterms.bibliographicCitation | 50. Yeon, S.; Hyun, S. Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements. J. Ind. Eng. Chem. 2012, 18, 128–136. | spa |
dcterms.bibliographicCitation | 51. Schröder, C.; Nguyen, M.; Kraxenberger, M.; Chevalier, Y.; Melcher, C.; Wegener, B.; Birkenmaier, C. Modification of PMMA vertebroplasty cement for reduced stiffness by addition of normal saline: A material properties evaluation. Eur. Spine J. 2017, 26, 3209–3215 | spa |
dcterms.bibliographicCitation | 52. Ormsby, R.; McNally, T.; O’Hare, P.; Burke, G.; Mitchell, C.; Dunne, N. Fatigue and biocompatibility properties of a poly(methyl methacrylate) bone cement with multi-walled carbon nanotubes. Acta Biomater. 2012, 8, 1201–1212 | spa |
dcterms.bibliographicCitation | 53. Ruiz, S.; Tamayo, J.A.; Ospina, J.D.; Navia Porras, D.P.; Valencia Zapata, M.E.; Mina Hernandez, J.H.; Valencia, C.H.; Zuluaga, F.; Grande Tovar, C.D. Antimicrobial Films Based on Nanocomposites of Chitosan /Poly (vinyl alcohol) /Graphene Oxide for Biomedical Applications. Biomolecules 2019, 9, 109 | spa |
dcterms.bibliographicCitation | 54. Du, J.; Wang, S.; You, H.; Zhao, X. Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environ. Toxicol. Pharmacol. 2013, 36, 451–462. | spa |
dcterms.bibliographicCitation | 55. Kassem, A.; Ayoub, G.M.; Malaeb, L. Antibacterial activity of chitosan nanocomposites and carbon nanotubes: A review. Sci. Total Environ. 2019, 668, 566–576 | spa |
dcterms.bibliographicCitation | 56. Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980. | spa |
dcterms.bibliographicCitation | 57. Fan, J.; Grande, C.D.; Rodrigues, D.F. Biodegradation of graphene oxide-polymer nanocomposite films in wastewater. Environ. Sci. Nano 2017, 4, 1808–1816 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/polym12081773 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | acrylic bone cement; antibacterial activity; graphene oxide; mechanical properties; physical properties | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |