Mostrar el registro sencillo del ítem
Reduction of Postharvest Quality Loss and Microbiological Decay of Tomato “Chonto” (Solanum lycopersicum L.) Using Chitosan-E Essential Oil-Based Edible Coatings under Low-Temperature Storage
dc.contributor.author | Peralta-Ruiz, Yeimmy | |
dc.contributor.other | Sinning-Mangonez, Angie | |
dc.contributor.other | Grande Tovar, Carlos David | |
dc.contributor.other | Coronell, Edgar A. | |
dc.contributor.other | Marino, Marcos F. | |
dc.contributor.other | Chaves-Lopez, Clemencia | |
dc.date.accessioned | 2022-11-15T19:44:33Z | |
dc.date.available | 2022-11-15T19:44:33Z | |
dc.date.issued | 2020-08-13 | |
dc.date.submitted | 2020-07-27 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/848 | |
dc.description.abstract | The tomato (Solanum lycopersicum L.) is one of the many essential vegetables around the world due to its nutritive content and attractive flavor. However, its short shelf-life and postharvest losses affect its marketing. In this study, the effects of chitosan-Ruta graveolens (CS + RGEO) essential oil coatings on the postharvest quality of Tomato var. “chonto” stored at low temperature (4 ◦C) for 12 days are reported. The film-forming dispersions (FFD) were eco-friendly synthesized and presented low viscosities (between 0.126 and 0.029 Pa s), small particle sizes (between 1.29 and 1.56 µm), and low densities. The mature index (12.65% for uncoated fruits and 10.21% for F4 coated tomatoes), weight loss (29.8% for F1 and 16.7% for F5 coated tomatoes), and decay index (3.0 for uncoated and 1.0 for F5 coated tomatoes) were significantly different, indicating a preservative effect on the quality of the tomato. Moreover, aerobic mesophilic bacteria were significantly reduced (in five Log CFU/g compared to control) by using 15 µL/mL of RGEO. The coatings, including 10 and 15 µL/mL of RGEO, completely inhibited the mold and yeast growth on tomato surfaces without negatively affecting the consumer acceptation, as the sensorial analysis demonstrated. The results presented in this study show that CS + RGEO coatings are promising in the postharvest treatment of tomato var. “chonto” | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Polymers | spa |
dc.title | Reduction of Postharvest Quality Loss and Microbiological Decay of Tomato “Chonto” (Solanum lycopersicum L.) Using Chitosan-E Essential Oil-Based Edible Coatings under Low-Temperature Storage | spa |
dcterms.bibliographicCitation | 1. Tripathy, B.; Mallikarjunarao, K. Variability in tomato (Solanum lycopersicum L.): A review. J. Pharmacogn. Phytochem. 2020, 9, 383–388. | spa |
dcterms.bibliographicCitation | 2. Arah, I.K.; Ahorbo, G.K.; Anku, E.K.; Kumah, E.K.; Amaglo, H. Postharvest handling practices and treatment methods for tomato handlers in developing countries: A mini-review. Adv. Agric. 2016, 2016, 1–8 | spa |
dcterms.bibliographicCitation | 3. Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as potential source of natural additives for meat industry. A review. Antioxidants 2020, 9, 73 | spa |
dcterms.bibliographicCitation | 4. Arah, I.K.; Kumah, E.K.; Anku, E.K.; Amaglo, H. An overview of post-harvest losses in tomato production in Africa: Causes and possible prevention strategies. J. Biol. Agric. Healthc. 2015, 5, 78–88. | spa |
dcterms.bibliographicCitation | 5. Muhammad, R.H.; Bamisheyi, E.; Olayemi, E.F. The effect of stage of ripening on the shelf life of tomatoes (Lycopersicon esculentum) stored in the evaporative cooling system (ECS). J. Dairy Foods Home Sci. 2011, 30, 299–301 | spa |
dcterms.bibliographicCitation | 6. Hahn, F.; Lopez, I.; Hernandez, G. Spectral detection and neural network discrimination of Rhizopus stolonifer spores on red tomatoes. Biosyst. Eng. 2004, 89, 93–99 | spa |
dcterms.bibliographicCitation | 7. Ahmed, F.A.; Sipes, B.S.; Alvarez, A.M. Postharvest diseases of tomato and natural products for disease management. Afr. J. Agric. Res. 2017, 12, 684–69 | spa |
dcterms.bibliographicCitation | 8. Prusky, D. Reduction of the incidence of postharvest quality losses, and future prospects. Food Secur. 2011, 3, 463–474 | spa |
dcterms.bibliographicCitation | 9. Mohácsi-Farkas, C.; Nyir˝o-Fekete, B.; Daood, H.; Dalmadi, I.; Kiskó, G. Improving microbiological safety and maintaining sensory and nutritional quality of pre-cut tomato and carrot by gamma irradiation. Radiat. Phys. Chem. 2014, 99, 79–85 | spa |
dcterms.bibliographicCitation | 10. McKenzie, T.J.; Singh-Peterson, L.; Underhill, S.J.R. Quantifying postharvest loss and the implication of market-based decisions: A case study of two commercial domestic tomato supply chains in Queensland, Australia. Horticulturae 2017, 3, 44 | spa |
dcterms.bibliographicCitation | 11. Pardo-De la Hoz, C.J.; Calderón, C.; Rincón, A.M.; Cárdenas, M.; Danies, G.; López-Kleine, L.; Restrepo, S.; Jiménez, P. Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathol. 2016, 65, 227–237. | spa |
dcterms.bibliographicCitation | 12. Palou, L.; Smilanick, J.L.; Crisosto, C.H. Evaluation of food additives as alternative or complementary chemicals To conventional fungicides for the control of major postharvest diseases of stone fruit. J. Food Prot. 2009, 72, 1037–1046 | spa |
dcterms.bibliographicCitation | 13. Sapers, G.M. Washing and sanitizing treatments for fruits and vegetables BT-Microbiology of fruits and vegetables. In Microbiology of Fruits and Vegetables; ASM Press: Washington, DC, USA, 2005; pp. 391–416. | spa |
dcterms.bibliographicCitation | 14. Grande-Tovar, C.D.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan coatings enriched with essential oils: Effects on fungi involve in fruit decay and mechanisms of action. Trends Food Sci. Technol. 2018, 78, 61–71 | spa |
dcterms.bibliographicCitation | 15. Yang, L.; Paulson, A.T. Mechanical and water vapour barrier properties of edible gellan films. Food Res. Int. 2000, 33, 563–570 | spa |
dcterms.bibliographicCitation | 16. Grande Tovar, C.D.; Delgado-Ospina, J.; Navia Porras, D.P.; Peralta-Ruiz, Y.; Cordero, A.P.; Castro, J.I.; Valencia, C.; Noé, M.; Mina, J.H.; Chaves López, C. Colletotrichum gloesporioides inhibition in situ by chitosan-Ruta graveolens essential oil coatings: Effect on microbiological, physicochemical, and organoleptic properties of guava (Psidium guajava L.) during room temperature storage. Biomolecules 2019, 9, 399. | spa |
dcterms.bibliographicCitation | 17. Jianglian, D.; Shaoying, Z. Application of chitosan-based coating in fruit and vegetable preservation: A review. J. Food Process. Technol. 2013, 4, 227. | spa |
dcterms.bibliographicCitation | 18. Yuan, G.; Chen, X.; Li, D. Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Res. Int. 2016, 89, 117–128 | spa |
dcterms.bibliographicCitation | 19. Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166 | spa |
dcterms.bibliographicCitation | 20. Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841 | spa |
dcterms.bibliographicCitation | 21. Ramos-García, M.; Bosquez-Molina, E.; Hernández-Romano, J.; Zavala-Padilla, G.; Terrés-Rojas, E.; Alia-Tejacal, I.; Barrera-Necha, L.; Hernández-López, M.; Bautista-Baños, S. Use of chitosan-based edible coatings in combination with other natural compounds, to control Rhizopus stolonifer and Escherichia coli DH5α in fresh tomatoes. Crop Prot. 2012, 38, 1–6 | spa |
dcterms.bibliographicCitation | 22. Perdones, Á.; Tur, N.; Chiralt, A.; Vargas, M. Effect on tomato plant and fruit of the application of biopolymer–oregano essential oil coatings. J. Sci. Food Agric. 2016, 96, 4505–4513. | spa |
dcterms.bibliographicCitation | 23. Abdel-Kader, M.M.; El-Mougy, N.S.; Lashin, S.M. Biological and chemical resistance inducers approaches for controlling foliar diseases of some vegetables under protected cultivation system. J. Plant Pathol. Microbiol. 2013, 4, 200 | spa |
dcterms.bibliographicCitation | 24. Barreto, T.A.; Andrade, S.C.A.; Maciel, J.F.; Arcanjo, N.M.O.; Madruga, M.S.; Meireles, B.; Cordeiro, Â.M.T.; Souza, E.L.; Magnani, M. A chitosan coating containing essential oil from Origanum vulgare L. to control postharvest mold infections and keep the quality of cherry tomato fruit. Front. Microbiol. 2016, 7, 1724. | spa |
dcterms.bibliographicCitation | 25. Athayde, A.J.A.A.; de Oliveira, P.D.L.; Guerra, I.C.D.; da Conceição, M.L.; de Lima, M.A.B.; Arcanjo, N.M.O.; Madruga, M.S.; Berger, L.R.R.; de Souza, E.L. A coating composed of chitosan and Cymbopogon citratus (Dc. Ex Nees) essential oil to control Rhizopus soft rot and quality in tomato fruit stored at room temperature. J. Hortic. Sci. Biotechnol. 2016, 91, 582–591 | spa |
dcterms.bibliographicCitation | 26. Migliori, C.A.; Salvati, L.; Di Cesare, L.F.; Lo Scalzo, R.; Parisi, M. Effects of preharvest applications of natural antimicrobial products on tomato fruit decay and quality during long-term storage. Sci. Hortic. (Amst.) 2017, 222, 193–202. | spa |
dcterms.bibliographicCitation | 27. Araújo, J.M.S.; de Siqueira, A.C.P.; Blank, A.F.; Narain, N.; de Aquino Santana, L.C.L. A cassava starch–chitosan edible coating enriched with lippia sidoides cham. essential oil and pomegranate peel extract for preservation of italian tomatoes (lycopersicon esculentum mill.) stored at room temperature. Food Bioprocess Technol. 2018, 11, 1750–1760 | spa |
dcterms.bibliographicCitation | 28. Chaudhary, S.; Kumar, S.; Kumar, V.; Sharma, R. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int. J. Biol. Macromol. 2020, 152, 154–170 | spa |
dcterms.bibliographicCitation | 29. Anandharamakrishnan, C. Techniques for Nanoencapsulation of Food Ingredients; Springer: New York, NY, USA, 2014; ISBN 1461493870. | spa |
dcterms.bibliographicCitation | 30. Horison, R.; Sulaiman, F.O.; Alfredo, D.; Wardana, A.A. Physical characteristics of nanoemulsion from chitosan/nutmeg seed oil and evaluation of its coating against microbial growth on strawberry. Food Res. 2019, 3, 821–827 | spa |
dcterms.bibliographicCitation | 31. Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov. Food Sci. Emerg. Technol. 2015, 28, 73–80 | spa |
dcterms.bibliographicCitation | 32. Correa-Pacheco, Z.N.; Bautista-Baños, S.; Valle-Marquina, M.Á.; Hernández-López, M. The effect of nanostructured chitosan and chitosan-thyme essential oil coatings on Colletotrichum gloeosporioides growth in vitro and on cv hass avocado and fruit quality. J. Phytopathol. 2017, 165, 297–305 | spa |
dcterms.bibliographicCitation | 33. Oh, Y.A.; Oh, Y.J.; Song, A.Y.; Won, J.S.; Song, K.B.; Min, S.C. Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT 2017, 75, 742–750. | spa |
dcterms.bibliographicCitation | 34. Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem. 2018, 246, 211–219 | spa |
dcterms.bibliographicCitation | 35. González-Locarno, M.; Maza Pautt, Y.; Albis, A.; Florez López, E.; Grande Tovar, D.C. Assessment of chitosan-rue (Ruta graveolens L.) essential oil-based coatings on refrigerated cape gooseberry (Physalis peruviana L.) quality. Appl. Sci. 2020, 10, 2684 | spa |
dcterms.bibliographicCitation | 36. Sinning, A.; Bermont, D. Efecto de Recubrimientos Basados en Quitosano y Aceite Esencial de Ruda (Ruta graveolens L.) en el Control de Antracnosis Causada por Colletotrichum Gloeosporioides en Papaya Maradol (Carica papaya L.); Universidad del Atlántico: Atlántico, Colombia, 2019 | spa |
dcterms.bibliographicCitation | 37. Peralta-Ruiz, Y.; Grande Tovar, C.G.; Sinning-Mangonez, A.; Bermont, D.; Pérez Cordero, A.; Paparella, A.; Chaves-López, C. Colletotrichum gloesporioidesinhibition using chitosan-Ruta graveolens L. essential oil coatings: Studies in vitro and in situ on Carica papaya fruit. Int. J. Food Microbiol. 2020, 326, 108649. | spa |
dcterms.bibliographicCitation | 38. USDA United States Standard for Grades of Fresh Market Tomatoes; United States Deparment of Agriculture: Washington, DC, USA, 1976. | spa |
dcterms.bibliographicCitation | 39. Niño Pacheco, W.D.; López, F.R.J. Tomato classification according to organoleptic maturity (coloration) using machine learning algorithms K-NN, MLP, and K-Means Clustering. In Proceedings of the 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), Bucaramanga, Colombia, 24–26 April 2019; pp. 1–5. | spa |
dcterms.bibliographicCitation | 40. Tang, X.; Yan, X. Dip-coating for fibrous materials: Mechanism, methods and applications. J. Sol-Gel Sci. Technol. 2017, 81, 378–404 | spa |
dcterms.bibliographicCitation | 41. International Standards Organization Piston-operated Volumetric Apparatus—Part-2: Piston Pipettes; International Organization for Standarization: Geneva, Switzerland, 2002; p. 11 | spa |
dcterms.bibliographicCitation | 42. Horwitz, W. Agricultural chemicals, contaminants, drugs. In Official Methods of Analysis of AOAC International; Horwitz, W., Ed.; Aoac Intl: Rockville, MD, USA, 2010; Volume I, ISBN 0935584676. | spa |
dcterms.bibliographicCitation | 43. Min, S.; Zhang, Q.H. Effects of commercial-scale pulsed electric field processing on flavor and color of tomato juice. J. Food Sci. 2003, 68, 1600–1606 | spa |
dcterms.bibliographicCitation | 44. López Camelo, A.F.; Gómez, P.A. Comparison of color indexes for tomato ripening. Hortic. Bras. 2004, 22, 534–537 | spa |
dcterms.bibliographicCitation | 45. Martínez, K.; Ortiz, M.; Albis, A.; Gilma Gutiérrez Castañeda, C.; Valencia, E.M.; Grande Tovar, D.C. The effect of edible chitosan coatings incorporated with Thymus capitatus essential oil on the shelf-life of strawberry (Fragaria x ananassa) during cold storage. Biomolecules 2018, 8, 155 | spa |
dcterms.bibliographicCitation | 46. Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. | spa |
dcterms.bibliographicCitation | 47. Badawy, M.E.I.; Rabea, E.I. Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol. Technol. 2009, 51, 110–117 | spa |
dcterms.bibliographicCitation | 48. Standard, I.S. Sensory Analysis. Identification and Selection of Descriptors for Establishing a Sensory Profile by a Multidimensional Approach; AOAC International: Rockville, MD, USA, 1994; p. 11035 | spa |
dcterms.bibliographicCitation | 49. Sánchez-González, L.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydr. Polym. 2010, 82, 277–283 | spa |
dcterms.bibliographicCitation | 50. Wu, S.; Lu, M.; Wang, S. Effect of oligosaccharides derived from Laminaria japonica-incorporated pullulan coatings on preservation of cherry tomatoes. FOOD Chem. 2016, 199, 296–300 | spa |
dcterms.bibliographicCitation | 51. Shao, X.; Cao, B.; Xu, F.; Xie, S.; Yu, D.; Wang, H. Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biol. Technol. 2015, 99, 37–43 | spa |
dcterms.bibliographicCitation | 52. Freitas, R.; Nero, L.A.; Carvalho, A.F. Enumeration of mesophilic aerobes in milk: Evaluation of standard official protocols and Petrifilm aerobic count plates. J. Dairy Sci. 2009, 92, 3069–3073 | spa |
dcterms.bibliographicCitation | 53. Ahmad, M.S.; Siddiqui, M.W. Postharvest Quality Assurance of Fruits; Springer International Publishing: Cham, Switzerland, 2015; ISBN 331921196X | spa |
dcterms.bibliographicCitation | 54. Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT-Food Sci. Technol. 2010, 43, 837–842 | spa |
dcterms.bibliographicCitation | 55. Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 2006, 63, 367–374 | spa |
dcterms.bibliographicCitation | 56. Meepagala, K.M.; Schrader, K.K.; Wedge, D.E.; Duke, S.O. Algicidal and antifungal compounds from the roots of Ruta graveolens and synthesis of their analogs. Phytochemistry 2005, 66, 2689–2695 | spa |
dcterms.bibliographicCitation | 57. Haddouchi, F.; Belkaid, A.B.; Sek, F.; Chaouche, T.M.; Zaouali, Y.; Ksouri, R.; Attou, A.; Benmansour, A. Chemical composition and antimicrobial activity of the essential oils from four Ruta species growing in Algeria. Food Chem. 2013, 14, 253–258 | spa |
dcterms.bibliographicCitation | 58. Reddy, D.N.; Al-Rajab, A.J. Chemical composition, antibacterial and antifungal activities of Ruta graveolens L. volatile oils. Cogent Chem. 2016, 2, 1220055 | spa |
dcterms.bibliographicCitation | 59. Grande Tovar, D.C.; Castro, I.J.; Valencia Llano, H.C.; Navia Porras, P.D.; Delgado Ospina, J.; Valencia Zapata, E.M.; Herminsul Mina Hernandez, J.; Chaur, N.M. Synthesis, characterization, and histological evaluation of chitosan-Ruta graveolens essential oil films. Molecule 2020, 25, 1688 | spa |
dcterms.bibliographicCitation | 60. Bonilla Lagos, M.J.; Atarés Huerta, L.M.; Vargas, M.; Chiralt, A. Physicochemical properties of chitosan-essential oils film-forming dispersions. Effect of homogenization treatments. Procedia Food Sci. 2011, 1, 44–49 | spa |
dcterms.bibliographicCitation | 61. Roland, I.; Piel, G.; Delattre, L.; Evrard, B. Systematic characterization of oil-in-water emulsions for formulation design. Int. J. Pharm. 2003, 263, 85–94 | spa |
dcterms.bibliographicCitation | 62. Vargas, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Characterization of chitosan–oleic acid composite films. Food Hydrocoll. 2009, 23, 536–547 | spa |
dcterms.bibliographicCitation | 63. Shokri, S.; Parastouei, K.; Taghdir, M.; Abbaszadeh, S. Application an edible active coating based on chitosan-Ferulago angulata essential oil nanoemulsion to shelf life extension of Rainbow trout fillets stored at 4 C. Int. J. Biol. Macromol. 2020, 153, 846–854 | spa |
dcterms.bibliographicCitation | 64. Rubio-Hernandez, F.J.; Carrique, F.; Ruiz-Reina, E. The primary electroviscous effect in colloidal suspensions. Adv. Colloid Interface Sci. 2004, 107, 51–60 | spa |
dcterms.bibliographicCitation | 65. García, M.; Casariego, A.; Diaz, R.; Roblejo, L. Effect of edible chitosan/zeolite coating on tomatoes quality during refrigerated storage. Emir. J. Food Agric. 2014, 26, 238–246 | spa |
dcterms.bibliographicCitation | 66. Dovale-Rosabal, G.; Casariego, A.; Forbes-Hernandez, T.Y.; García, M.A. Effect of chitosan-olive oil emulsion coating on quality of tomatoes during storage at ambient conditions. J. Berry Res. 2015, 5, 207–218 | spa |
dcterms.bibliographicCitation | 67. Buck, J.S.; Kubota, C.; Wu, M. Effects of nutrient solution EC, plant microclimate and cultivars on fruit quality and yield of hydroponic tomatoes (Lycopersicon esculentum). In Proceedings of the VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition 659, Kissimmee, FL, USA, 25 November 2004; pp. 541–547. | spa |
dcterms.bibliographicCitation | 68. Claussen, W.; Brückner, B.; Krumbein, A.; Lenz, F. Long-term response of tomato plants to changing nutrient concentration in the root environment—The role of proline as an indicator of sensory fruit quality. Plant Sci. 2006, 171, 323–331 | spa |
dcterms.bibliographicCitation | 69. Krauss, S.; Schnitzler, W.H.; Grassmann, J.; Woitke, M. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J. Agric. Food Chem. 2006, 54, 441–448 | spa |
dcterms.bibliographicCitation | 70. Wu, M.; Kubota, C. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci. Hortic. (Amst.) 2008, 116, 122–129. | spa |
dcterms.bibliographicCitation | 71. Guerra, I.C.D.; de Oliveira, P.D.L.; de Souza Pontes, A.L.; Lúcio, A.S.S.C.; Tavares, J.F.; Barbosa-Filho, J.M.; Madruga, M.S.; de Souza, E.L. Coatings comprising chitosan and Mentha piperita L. or Mentha × villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit. Int. J. Food Microbiol. 2015, 214, 168–178 | spa |
dcterms.bibliographicCitation | 72. Khaliq, G.; Mohamed, M.T.M.; Ali, A.; Ding, P.; Ghazali, H.M. Effect of gum arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low-temperature storage. Sci. Hortic. (Amsterdam) 2015, 190, 187–194 | spa |
dcterms.bibliographicCitation | 73. Romanazzi, G.; Feliziani, E.; Sivakumar, D. Chitosan, a Biopolymer with triple action on postharvest decay of fruit and vegetables: Eliciting, antimicrobial and film-forming properties. Front. Microbiol. 2018, 9, 1–9. | spa |
dcterms.bibliographicCitation | 74. Xing, Y.; Xu, Q.; Li, X.; Chen, C.; Ma, L.; Li, S.; Che, Z.; Lin, H. Chitosan-based coating with antimicrobial agents: Preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int. J. Polym. Sci. 2016, 2016, 4851730 | spa |
dcterms.bibliographicCitation | 75. Veloso, R.A.; Pereira, T.; Ferreira, D.S.; Debona, D.; Wagner, R.; Aguiar, D.S. Enzymatic activity in essential oil-treated and pathogen-inoculated corn plants. J. Agric. Sci. 2018, 10, 171–177 | spa |
dcterms.bibliographicCitation | 76. Tian, S.; Qin, G.; Li, B. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol. Biol. 2013, 82, 593–602 | spa |
dcterms.bibliographicCitation | 77. de Aquino, A.B.; Blank, A.F.; de Aquino Santana, L.C.L. Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem. 2015, 171, 108–116 | spa |
dcterms.bibliographicCitation | 78. Olivas, G.I.; Barbosa-Cánovas, V.G. Edible coatings for fresh-cut fruits. Crit. Rev. Food Sci. Nutr. 2005, 45, 657–670 | spa |
dcterms.bibliographicCitation | 79. Kaewklin, P.; Siripatrawan, U.; Suwanagul, A.; Lee, Y.S. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. Int. J. Biol. Macromol. 2018, 112, 523–529 | spa |
dcterms.bibliographicCitation | 80. Sun, X.; Narciso, J.; Wang, Z.; Ference, C.; Bai, J.; Zhou, K. Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries. J. Food Sci. 2014, 79, M955–M960 | spa |
dcterms.bibliographicCitation | 81. Sánchez-González, L.; Pastor, C.; Vargas, M.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol. Technol. 2011, 60, 57–63 | spa |
dcterms.bibliographicCitation | 82. Hong, K.; Xie, J.; Zhang, L.; Sun, D.; Gong, D. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Sci. Hortic. (Amsterdam) 2012, 144, 172–178 | spa |
dcterms.bibliographicCitation | 83. Ilahy, R.; Tlili, I.; Siddiqui, M.W.; Hdider, C.; Lenucci, M.S. Inside and beyond color: Comparative overview of functional quality of tomato and watermelon fruits. Front. Plant Sci. 2019, 10, 1–26 | spa |
dcterms.bibliographicCitation | 84. Pobiega, K.; Przybył, J.L.; Zubernik, J.; Gniewosz, M. Prolonging the shelf life of cherry tomatoes by ˙ pullulan coating with ethanol extract of propolis during refrigerated storage. Food Bioprocess Technol. 2020, 13, 1447–1461 | spa |
dcterms.bibliographicCitation | 85. El-Katatny, M.; Emam, A.S. Control of postharvest rot by spore suspension and antifungal metabolites of Trichoderma harzanium. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 1505–1528 | spa |
dcterms.bibliographicCitation | 86. Janisiewicz, W.J.; Conway, W.S. Combining Biological Control with Physical and Chemical Treatments to Control Fruit Decay after Harvest; United States Deparment of Agricultural: Washington, DC, USA, 2010. | spa |
dcterms.bibliographicCitation | 87. Cao, Z.; Sun, Y. Chitosan-based rechargeable long-term antimicrobial and biofilm-controlling systems. J. Biomed. Mater. Res. Part A 2009, 89, 960–967 | spa |
dcterms.bibliographicCitation | 88. Attia, E.Z.; Abd El-Baky, R.M.; Desoukey, S.Y.; El Hakeem Mohamed, M.A.; Bishr, M.M.; Kamel, M.S. Chemical composition and antimicrobial activities of essential oils of Ruta graveolens plants treated with salicylic acid under drought stress conditions. Future J. Pharm. Sci. 2018, 4, 254–264 | spa |
dcterms.bibliographicCitation | 89. Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.3390/polym12081822 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | antifungal; chitosan coatings; Ruta graveolens essential oil; postharvest quality; Solanum lycopersicum | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Agroindustrial | spa |
dc.publisher.sede | Sede Norte | spa |