Mostrar el registro sencillo del ítem

dc.contributor.authorDe Armas-Calderón, Nelly
dc.contributor.otherLizarazo-Bohórquez, Cristina
dc.contributor.otherDuarte-Forero, Jorge
dc.date.accessioned2022-11-15T19:43:51Z
dc.date.available2022-11-15T19:43:51Z
dc.date.issued2020-08-12
dc.date.submitted2019-12-21
dc.identifier.urihttps://hdl.handle.net/20.500.12834/846
dc.description.abstractIn this research, the implementation of an integrated system composed of a dual-fuel engine (Diesel-Hydrogen), a PEM electrolyzer and a thermoelectric generator is envisioned. In order to know the optimal operating conditions of each sub-system, the exergetic efficiency and destroyed exergy were studied. It was estimated that for the dual combustion engine, the destroyed exergy would increase as a function of the concentration of methane in its mixture. By varying the electrical input to the electrolyzer, it was found that when the input current was 2A, the exergetic efficiency would go up to 92.59%, while for a current of 5A, the efficiency decreased in 51.80%. Finally, the exergetic efficiency of TEG decreased by increasing the hot flow temperature; 86.68% of the decrease in efficiency occurred for temperatures between 470K and 510K. On the other hand, the destroyed exergy increased linearly with an increase in the inlet temperature of exhaust gases.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceUniversidad Nacional de Colombiaspa
dc.titleExergetic analysis of a dual-fuel engine, PEM electrolyzer and thermoelectric generator integrated systemspa
dc.title.alternativeAnálisis exergético de un sistema integrado de motor de combustible dual, electrolizador PEM y generador termoeléctricospa
dcterms.bibliographicCitation[1] Gautam, P., Kumar, S. and Lokhandwala, S., Energy-Aware Intelligence in Megacities. Chapter 11, Elsevier B.V., 2019. DOI: 10.1016/B978-0-444-64083-3.00011-7spa
dcterms.bibliographicCitation[2] Preston, S.H. The effect of population growth on environmental quality, Population Research and Policy Review, 15(2), pp. 95-108, 1996. DOI: 10.1007/BF00126129spa
dcterms.bibliographicCitation[3] Shi, A., The impact of population pressure on global carbon dioxide emissions, 1975-1996: evidence from pooled cross-country data., Ecological Economics, 44(1), pp. 29-42, 2003. DOI: 10.1016/S0921- 8009(02)00223-9.spa
dcterms.bibliographicCitation[4] Brovkin, V., Sitch, S., Von Bloh, W., Claussen, M., Bauer, E. and Cramer, W., Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biology 10(8), pp. 1253-1266, 2004. DOI: 10.1111/j.1365- 2486.2004.00812.xspa
dcterms.bibliographicCitation[5] Kurihara, H. and Shirayama, Y., Effects of increased atmospheric CO2 on sea urchin early development, 274, pp. 161-169, 2004. DOI: 10.3354/meps274161.spa
dcterms.bibliographicCitation[6] Bilgen, S., Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews, 38, pp. 890-902, 2014. DOI: 10.1016/j.rser.2014.07.004.spa
dcterms.bibliographicCitation[7] Hansen, J., Ruedy, R., Sato, M. and Lo, K., Global surface temperature change. Reviews of Geophysics, 48(4), 2010. DOI: 10.1029/2010RG000345spa
dcterms.bibliographicCitation[8] New, M., Liverman, D., Schroder, H. and Anderson, K., Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications, 2011. DOI: 10.1098/rsta.2010.0303.spa
dcterms.bibliographicCitation[9] Revankar, S.T., Nuclear Hydrogen Production. Elsevier Inc., 2019. DOI: 10.1016/B978-0-12-813975-2.00004-1.spa
dcterms.bibliographicCitation[10] Champier, D., Thermoelectric generators: a review of applications. Energy Conversion and Management, 140, pp. 167-181, 2017. DOI: 10.1016/j.enconman.2017.02.070spa
dcterms.bibliographicCitation[11] Demir, M.E. and Dincer, I., Development of a hybrid solar thermal system with TEG and PEM electrolyzer for hydrogen and power production. International Journal of Hydrogen Energy, 42(51), pp. 30044-30056, 2017. DOI: 10.1016/j.ijhydene.2017.09.001spa
dcterms.bibliographicCitation[12] Islam, S., Dincer, I. and Yilbas, B.S., Energetic and exergetic performance analyses of a solar energy-based integrated system for multigeneration including thermoelectric generators. Energy, 93, pp. 1246-1258, 2015. DOI: 10.1016/j.energy.2015.09.111spa
dcterms.bibliographicCitation[13] Kazim, A.M., Exergoeconomic analysis of a PEM electrolyser at various operating temperatures and pressures. International Journal of Energy Research, 29(6), pp. 539-548, 2005. DOI: 10.1002/er.1073.spa
dcterms.bibliographicCitation[14] Ni, M., Leung, M.K. and Leung, D.Y., Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. Energy Conversion and Management, 49(10), pp. 2748-2756, 2008. DOI: 10.1016/j.enconman.2008.03.018.spa
dcterms.bibliographicCitation[15] Sorgulu, F. and Dincer, I., Thermodynamic analyses of a solar-based combined cycle integrated with electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 43(2), pp. 1047-1059, 2018. DOI: 10.1016/j.ijhydene.2017.09.126.spa
dcterms.bibliographicCitation[16] Al Zahrani, A.A. and Dincer, I., Thermodynamic and electrochemical analyses of a solid oxide electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 42(33), pp. 21404-21413, 2017. DOI: 10.1016/j.ijhydene.2017.03.186spa
dcterms.bibliographicCitation[17] da Costa, Y.J.R., de Lima, A.G.B., Bezerra Filho, C.R. and de AraujoLima, L., Energetic and exergetic analyses of a dual-fuel diesel engine. Renewable and Sustainable Energy Reviews, 16(7), pp. 4651-4660, 2012. DOI: 10.1016/j.rser.2012.04.013spa
dcterms.bibliographicCitation[18] Rufino, C.H., de Lima, A.J., Mattos, A.P., Allah, F.U., Bernal, J.L., Ferreira, J.V. and Gallo, W.L.Exergetic analysis of a spark-ignition engine fuelled with ethanol. Energy Conversion and Management, 192, pp. 20-29, 2019. DOI: 10.1016/j.enconman.2019.04.035.spa
dcterms.bibliographicCitation[19] Balli, O., Sohret, Y. and Karakoc, H.T., The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. International Journal of Hydrogen Energy, 43(23), pp. 10848-10858, 2018. DOI: 10.1016/j.ijhydene.2017.12.178.spa
dcterms.bibliographicCitation[20] Amador-Diaz, G., Duarte-Forero, J., Garcia, J., Rincon, A., Fontalvo, A., Bula, A. and Vazquez-Padilla, R., Maximum power from fluid flow by applying the first and second laws of thermodynamics. Journal of Energy Resources Technology. ASME, 139(3)pp. 1-8, 2017. DOI: 10.1115/1.4035021spa
dcterms.bibliographicCitation[21] Duarte-Forero, J.E., Estrada, W.G. y Guerrero, J.S., Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos. Inge Cuc, 14(1), pp. 122-132, 2018. DOI: 10.17981/ingecuc.14.1.2018.11.spa
dcterms.bibliographicCitation[22] Consuegra, F., Bula, A., Guillín, W., Sánchez, J. and Duarte-Forero, J.E., Instantaneous in-cylinder volume considering deformation and clearance due to lubricating film in reciprocating internal combustion engines. Energies, 12 (8), 2019. DOI: 10.3390/en12081437.spa
dcterms.bibliographicCitation[23] Narvaez-Pallares, H., Villareal-Acosta, S., Duarte-Forero, J.E. and Rincon-Montenegro, A., Implementación de un banco para pruebas en motor Diésel monocilíndrico con aplicaciones investigativas. Scientia et technica, 22(4), pp. 330-340, 2017. DOI: 10.22517/23447214.16111spa
dcterms.bibliographicCitation[24] Bejan, A., Tsatsaronis, G. and Moran, M.J., Thermal Design and Optimization, John Wiley, USA, 1995spa
dcterms.bibliographicCitation[25] Cengel, Y.A. and Boles, M., Termodinámica-Cengel 7th Ed., McGrow Hill, México, 2011.spa
dcterms.bibliographicCitation[26] Kotas, T.J., Appendix C Chemical exergy of industrial fuels, in: The Exergy Method of Thermal Plant Analysis, 1985, pp. 267-269. DOI: 10.1016/C2013-0-00894-8.spa
dcterms.bibliographicCitation[27] Caliskan, H., Dincer, I. and Hepbasli, A., Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: modeling and case study. Applied Thermal Engineering, 61(2), pp. 784-798, 2013. DOI: 10.1016/j.applthermaleng.2012.04.026spa
dcterms.bibliographicCitation[28] Demir, M.E. and Dincer, I., Development of an integrated hybrid solar thermal power system with thermoelectric generator for desalination and power production. Desalination, 404, pp. 59-71, 2017. DOI: 10.1016/j.desal.2016.10.016spa
dcterms.bibliographicCitation[29] Esmaili, P., Dincer, I. and Naterer, G.F., Energy and exergy analyses of electrolytic hydrogen production with molybdenum-oxo catalysts. International Journal of Hydrogen Energy. International Journal of Hydrogen Energy, 37(9), pp. 7365-7372, 2012. DOI: 10.1016/j.ijhydene.2012.01.076spa
dcterms.bibliographicCitation[30] Carmo, M., Fritz, D.L., Mergel, J. and Stolten, D., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 8(1), pp. 4901-4934, 2013. DOI: 10.1016/j.ijhydene.2013.01.151spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.15446/dyna.v87n215.84305
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsdiesel engine; electrolyzer; exergetic analysis; hybrid systems; thermoelectric generatorspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por