Mostrar el registro sencillo del ítem

dc.contributor.authorEstrada, L.
dc.contributor.otherMoreno, E.
dc.contributor.otherGonzalez Quiroga, A.
dc.contributor.otherBula, A.
dc.contributor.otherDuarte Forero, J.
dc.date.accessioned2022-11-15T19:42:29Z
dc.date.available2022-11-15T19:42:29Z
dc.date.issued2022-04-01
dc.date.submitted2021-12-31
dc.identifier.citationEstrada, L., Moreno, E., Gonzalez-Quiroga, A., Bula, A., & Duarte-Forero, J. (2022). Experimental assessment of performance and emissions for hydrogen-diesel dual fuel operation in a low displacement compression ignition engine. Heliyon, 8(4), e09285. https://doi.org/10.1016/j.heliyon.2022.e09285spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/837
dc.description.abstractThe combustion of pure H2 in engines is still troublesome, needing further research and development. Using H2 and diesel in a dual-fuel compression ignition engine appears as a more feasible approach. Here we report an experimental assessment of performance and emissions for a single-cylinder, four-stroke, air-cooled compression ignition engine operating with neat diesel and H2-diesel dual-fuel. Previous studies typically show the performance and emissions for a specific operation condition (i.e. a fixed engine speed and torque) or a limited operating range. Our experiments covered engine speeds of 3000 and 3600 rpm and torque levels of 3 and 7 Nm. An in-house designed and built alkaline cell generated the H2 used for the partial substitution of diesel. Compared with neat diesel, the results indicate that adding H2 decreased the air-fuel equivalence ratio and the Brake Specific Diesel Fuel Consumption Efficiency by around 14–29 % and 4–31 %. In contrast, adding H2 increased the Brake Fuel Conversion Efficiency by around 3–36 %. In addition, the Brake Thermal Efficiency increased in the presence of H2 in the range of 3–37 % for the lower engine speed and 27–43 % for the higher engine speed compared with neat diesel. The dual-fuel mode resulted in lower CO and CO2 emissions for the same power output. The emissions of hydrocarbons decreased with H2 addition, except for the lower engine speed and the higher torque. However, the dual-fuel operation resulted in higher NOx emissions than neat diesel, with 2–6 % and 19–48 % increments for the lower and higher engine speeds. H2 emerges as a versatile energy carrier with the potential to tackle current energy and emissions challenges; however, the dual-fuel strategy requires careful management of NOx emissions.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceHeliyonspa
dc.titleExperimental assessment of performance and emissions for hydrogen-diesel dual fuel operation in a low displacement compression ignition enginespa
dcterms.bibliographicCitationA. Kumar, J. Yadav, R. Mohan, Global warming leading to alarming recession of the Arctic sea-ice cover: insights from remote sensing observations and model reanalysis, Heliyon 6 (2020).spa
dcterms.bibliographicCitationM. Siegert, R.B. Alley, E. Rignot, J. Englander, R. Corell, Twenty-first century sealevel rise could exceed IPCC projections for strong-warming futures, One Earth 3 (2020) 691–703.spa
dcterms.bibliographicCitationH.K.S. Panahi, M. Dehhaghi, J.E. Kinder, T.C. Ezeji, A review on green liquid fuels for the transportation sector: a prospect of microbial solutions to climate change, Biofuel Res. J. 6 (2019) 995–1024.spa
dcterms.bibliographicCitationV. Ant onio, F. Jos e, M. Santos, Energy management system ISO 50001 : 2011 and energy management for sustainable development, Energy Pol. 133 (2019) 110868.spa
dcterms.bibliographicCitationA. Coram, D.W. Katzner, Reducing fossil-fuel emissions: dynamic paths for alternative energy-producing technologies, Energy Econ. 70 (2018) 179–189.spa
dcterms.bibliographicCitationG. Amador, J.D. Forero, A. Rincon, A. Fontalvo, A. Bula, R.V. Padilla, W. Orozco, Characteristics of auto-ignition in internal combustion engines operated with gaseous fuels of variable methane number, J. Energy Resour. Technol. 139 (4) (2017), 042205.spa
dcterms.bibliographicCitationQ. Wang, X. Yang, Investigating the sustainability of renewable energy – an empirical analysis of European Union countries using a hybrid of projection pursuit fuzzy clustering model and accelerated genetic algorithm based on real coding, J. Clean. Prod. 268 (2020) 121940.spa
dcterms.bibliographicCitationT. Ahmad, D. Zhang, A critical review of comparative global historical energy consumption and future demand: the story told so far, Energy Rep. 6 (2020) 1973–1991.spa
dcterms.bibliographicCitationS. Adams, E. Kwame, M. Klobodu, A. Apio, Renewable and nonrenewable energy, regime type and economic growth, Renew. Energy 125 (2018) 755–767.spa
dcterms.bibliographicCitationM. Khzouz, E.I. Gkanas, A. Girella, T. Statheros, C. Milanese, D. Chimica, C. Fisica, Sustainable hydrogen production via LiH hydrolysis for unmanned air vehicle (UAV) applications, Int. J. Hydrogen Energy 45 (2020) 5384–5394.spa
dcterms.bibliographicCitationC. Ghenai, M. Bettayeb, B. Brdjanin, A.K. Hamid, Hybrid solar PV/PEM fuel Cell/ Diesel Generator power system for cruise ship: a case study in Stockholm, Sweden, Case Stud. Therm. Eng. 14 (2019) 100497.spa
dcterms.bibliographicCitationB. Widera, Renewable hydrogen implementations for combined energy storage, transportation and stationary applications, Therm. Sci. Eng. Prog. 16 (2020) 100460.spa
dcterms.bibliographicCitationM. Koc, N. Tukenmez, M. Ozturk, Development and thermodynamic assessment of a novel solar and biomass energy based integrated plant for liquid hydrogen production, Int. J. Hydrogen Energy 45 (2020) 34587–34607.spa
dcterms.bibliographicCitationT. Sinigaglia, F. Lewiski, M. Eduardo, S. Martins, J. Cezar, M. Siluk, Production , storage, fuel stations of hydrogen and its utilization in automotive applications-a review, Int. J. Hydrogen Energy 42 (2017) 24597–24611.spa
dcterms.bibliographicCitationW. Martinez, E. Souza, A. Pedroni, J. Carvalhoa, V. Andrade, E. Sydneyb, Hydrogen: current advances and patented technologies of its renewable production, J. Clean. Prod. (2020) 124970.spa
dcterms.bibliographicCitationP. Olivier, C. Bourasseau, P.B. Bouamama, Low-temperature electrolysis system modelling: a review, Renew. Sustain. Energy Rev. 78 (2017) 280–300.spa
dcterms.bibliographicCitationI. Dincer, C. Acar, Innovation in hydrogen production, Int. J. Hydrogen Energy 42 (2017) 14843–14864.spa
dcterms.bibliographicCitationH. Ambarita, Performance and emission characteristics of a small diesel engine run in dual-fuel (diesel-biogas) mode, Case Stud. Therm. Eng. 10 (2017) 179–191.spa
dcterms.bibliographicCitationY. Rathore, D. Ramchandani, R.K. Pandey, Experimental investigation of performance characteristics of compression-ignition engine with biodiesel blends of Jatropha oil & coconut oil at fixed compression ratio, Heliyon 5 (11) (2019), e02717.spa
dcterms.bibliographicCitationM. Vijayakumar, P.M. Kumar, Performance and emission characteristics of compression-ignition engine handling biodiesel blends with electronic fumigation, Heliyon 5 (4) (2019), e01480.spa
dcterms.bibliographicCitationR. Ramírez-Restrepo, A. Sagastume-Guti errez, J. Cabello-Eras, B. Hern andez, J. Duarte-Forero, Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines, Heliyon 7 (11) (2021), e08273.spa
dcterms.bibliographicCitationR. Ramírez, A. Guti errez, J. Eras, K. Valencia, B. Hern andez, J. Duarte, Evaluation of the energy recovery potential of thermoelectric generators in diesel engines, J. Clean. Prod. 241 (2019) 118412.spa
dcterms.bibliographicCitationG. Valencia, C. Acevedo, J. Duarte, Combustion and performance study of lowdisplacement compression ignition engines operating with diesel–biodiesel blends, Appl. Sci. 10 (3) (2020) 907.spa
dcterms.bibliographicCitationM. Shirk, T. Mcguire, G. Neal, D. Haworth, Investigation of a hydrogen-assisted combustion system for a light-duty diesel vehicle, Int. J. Hydrogen Energy 33 (2008) 7237–7244.spa
dcterms.bibliographicCitationN. Castro, M. Toledo, G. Amador, An experimental investigation of the performance and emissions of a hydrogen-diesel dual fuel compression ignition internal combustion engine, Appl. Therm. Eng. 156 (2019) 660–667.spa
dcterms.bibliographicCitationN. Khatri, K.K. Khatri, Hydrogen enrichment on diesel engine with biogas in dual fuel mode, Int. J. Hydrogen Energy 45 (2020) 7128–7140.spa
dcterms.bibliographicCitationU. Rajak, P. Nashine, T. Nath, A. Pugazhendhi, Performance and emissions analysis of a diesel engine using hydrogen enriched n-butanol, diethyl ester and Spirulina microalgae biodiesel, Fuel 271 (2020) 117645.spa
dcterms.bibliographicCitationG. Tripathi, P. Sharma, A. Dhar, A. Sadiki, Computational investigation of diesel injection strategies in hydrogen-diesel dual fuel engine, Sustain. Energy Technol. Assessments 36 (2019) 100543.spa
dcterms.bibliographicCitationM. Talibi, P. Hellier, R. Morgan, C. Lenartowicz, Hydrogen-diesel fuel cocombustion strategies in light duty and heavy duty CI engines, Int. J. Hydrogen Energy 43 (2018) 9046–9058.spa
dcterms.bibliographicCitationW. Tutak, A. Jamrozik, K. Grab-rogali, Hydrogen effects on combustion stability performance and emissions of diesel engine, Int. J. Hydrogen Energy 45 (2020) 19936–19947.spa
dcterms.bibliographicCitationD.T. B al anescu, V.M. Homutescu, Effects of hydrogen-enriched methane combustion on latent heat recovery potential and environmental impact of condensing boilers, Appl. Therm. Eng. 197 (2021).spa
dcterms.bibliographicCitationH.W. Wu, T.T. Hsu, J.Y. He, C.M. Fan, Optimal performance and emissions of diesel/hydrogen-rich gas engine varying intake air temperature and EGR ratio, Appl. Therm. Eng. 124 (2017) 381–392.spa
dcterms.bibliographicCitationN. Saravanan, N. Govindan, An experimental investigation on a diesel engine with hydrogen fuel injection in intake manifold, SAE Tech. Pap. (2008).spa
dcterms.bibliographicCitationC. Vipavanich, S. Chuepeng, S. Skullong, Heat release analysis and thermal efficiency of a single cylinder diesel dual fuel engine with gasoline port injection, Case Stud. Therm. Eng. 12 (2018) 143–148spa
dcterms.bibliographicCitationA. Mejía, M. Leiva, A. Rinc on, A. Gonzalez, J. Duarte, Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends, Case Stud. Therm. Eng. 19 (100163) (2020) 1–13.spa
dcterms.bibliographicCitationP. Dimitriou, M. Kumar, T. Tsujimura, Y. Suzuki, Combustion and emissions characteristics of a hydrogen-diesel dual-fuel engine, Int. J. Hydrogen Energy 43 (29) (2018) 13605–13617.spa
dcterms.bibliographicCitationP. Dimitriou, T. Tsujimura, Y. Suzuki, Low-load hydrogen-diesel dual-fuel engine operation – a combustion efficiency improvement approach, I Int. J. Hydrogen Energy 44 (31) (2019) 17048–17060.spa
dcterms.bibliographicCitationP. Dimitriou, T. Tsujimura, A review of hydrogen as a compression ignition engine fuel, Int. J. Hydrogen Energy 42 (38) (2017) 24470–24486.spa
dcterms.bibliographicCitationH. Koten, Hydrogen effects on the diesel engine performance and emissions, Int. J. Hydrogen Energy 43 (22) (2018) 10511–10519.spa
dcterms.bibliographicCitationP. Rosha, A. Dhir, S. Mohapatra, Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: a review, Renew. Sustain. Energy Rev. 82 (2018) 3333–3349.spa
dcterms.bibliographicCitationV. Chintala, K. Subramanian, Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode, Energy 138 (2017) 197–209.spa
dcterms.bibliographicCitationV. Gnanamoorthi, V. Vimalananth, Effect of hydrogen fuel at higher flow rate under dual fuel mode in CRDI diesel engine, Int. J. Hydrogen Energy 45 (33) (2018) 16874–16889.spa
dcterms.bibliographicCitationP. Sharma, A. Dhar, Effect of hydrogen supplementation on engine performance and emissions, Int. J. Hydrogen Energy 43 (15) (2018) 7570–7580.spa
dcterms.bibliographicCitationV. Chintala, K. Subramanian, A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode, Renew. Sustain. Energy Rev. 70 (2017) 472–491spa
dcterms.bibliographicCitationC. Deheri, S. Acharya, D. Thatoi, A. Mohanty, A review on performance of biogas and hydrogen on diesel engine in dual fuel mode, Fuel 260 (2020) 116337.spa
dcterms.bibliographicCitationI. Yilmaz, M. Gumus, Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine, Energy 142 (2018) 1104–1113.spa
dcterms.bibliographicCitationA. Jamrozik, K. Grab-Rogali nski, W. Tutak, Hydrogen effects on combustion stability, performance and emission of diesel engine, Int. J. Hydrogen Energy 45 (38) (2020) 19936–19947.spa
dcterms.bibliographicCitationE. Zwoli nska, Y. Sun, A.G. Chmielewski, A. Pawelec, Removal of high concentrations of NOx and SO2 from diesel off-gases using a hybrid electron beam technology, Energy Rep. 6 (2020) 952–964.spa
dcterms.bibliographicCitationT. Pi-qiang, Z. Jian-yong, H. Zhi-yuan, L. Di-ming, D. Ai-min, Effects of fuel properties on exhaust emissions from diesel engines, J. Fuel Chem. Technol. 41 (2013) 347–355.spa
dcterms.bibliographicCitationM.A. Rosen, Environmental sustainability tools in the biofuel industry, Biofuel Res. J. 5 (2018) 751–752.spa
dcterms.bibliographicCitationS. Nag, A. Dhar, A. Gupta, Hydrogen-diesel co-combustion characteristics, vibroacoustics and unregulated emissions in EGR assisted dual fuel engine, Fuel (2022) 307.spa
dcterms.bibliographicCitationC.B. Kumar, D.B. Lata, D. Mahto, Effect of addition of di-tert butyl peroxide (DTBP) on performance and exhaust emissions of dual fuel diesel engine with hydrogen as a secondary fuel, Int. J. Hydrogen Energy 46 (2021) 9595–9612.spa
dcterms.bibliographicCitationM. Karimi, X. Wang, J. Hamilton, M. Negnevitsky, S. Lyden, Status, challenges and opportunities of dual fuel hybrid approaches-a review, Int. J. Hydrogen Energy 46 (2021) 34924–34957.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.heliyon.2022.e09285.
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urlhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85129533382&doi=10.1016%2fj.heliyon.2022.e09285&origin=inward&txGid=edccdccdfebb38f9f583d445bf5da458
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsHydrogenspa
dc.subject.keywordsDiesel enginespa
dc.subject.keywordsElectrolyzerspa
dc.subject.keywordsPartial substitutionspa
dc.subject.keywordsExhaust gasesspa
dc.subject.keywordsGas emissionsspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Químicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por