Mostrar el registro sencillo del ítem
Experimental assessment of performance and emissions for hydrogen-diesel dual fuel operation in a low displacement compression ignition engine
dc.contributor.author | Estrada, L. | |
dc.contributor.other | Moreno, E. | |
dc.contributor.other | Gonzalez Quiroga, A. | |
dc.contributor.other | Bula, A. | |
dc.contributor.other | Duarte Forero, J. | |
dc.date.accessioned | 2022-11-15T19:42:29Z | |
dc.date.available | 2022-11-15T19:42:29Z | |
dc.date.issued | 2022-04-01 | |
dc.date.submitted | 2021-12-31 | |
dc.identifier.citation | Estrada, L., Moreno, E., Gonzalez-Quiroga, A., Bula, A., & Duarte-Forero, J. (2022). Experimental assessment of performance and emissions for hydrogen-diesel dual fuel operation in a low displacement compression ignition engine. Heliyon, 8(4), e09285. https://doi.org/10.1016/j.heliyon.2022.e09285 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/837 | |
dc.description.abstract | The combustion of pure H2 in engines is still troublesome, needing further research and development. Using H2 and diesel in a dual-fuel compression ignition engine appears as a more feasible approach. Here we report an experimental assessment of performance and emissions for a single-cylinder, four-stroke, air-cooled compression ignition engine operating with neat diesel and H2-diesel dual-fuel. Previous studies typically show the performance and emissions for a specific operation condition (i.e. a fixed engine speed and torque) or a limited operating range. Our experiments covered engine speeds of 3000 and 3600 rpm and torque levels of 3 and 7 Nm. An in-house designed and built alkaline cell generated the H2 used for the partial substitution of diesel. Compared with neat diesel, the results indicate that adding H2 decreased the air-fuel equivalence ratio and the Brake Specific Diesel Fuel Consumption Efficiency by around 14–29 % and 4–31 %. In contrast, adding H2 increased the Brake Fuel Conversion Efficiency by around 3–36 %. In addition, the Brake Thermal Efficiency increased in the presence of H2 in the range of 3–37 % for the lower engine speed and 27–43 % for the higher engine speed compared with neat diesel. The dual-fuel mode resulted in lower CO and CO2 emissions for the same power output. The emissions of hydrocarbons decreased with H2 addition, except for the lower engine speed and the higher torque. However, the dual-fuel operation resulted in higher NOx emissions than neat diesel, with 2–6 % and 19–48 % increments for the lower and higher engine speeds. H2 emerges as a versatile energy carrier with the potential to tackle current energy and emissions challenges; however, the dual-fuel strategy requires careful management of NOx emissions. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Heliyon | spa |
dc.title | Experimental assessment of performance and emissions for hydrogen-diesel dual fuel operation in a low displacement compression ignition engine | spa |
dcterms.bibliographicCitation | A. Kumar, J. Yadav, R. Mohan, Global warming leading to alarming recession of the Arctic sea-ice cover: insights from remote sensing observations and model reanalysis, Heliyon 6 (2020). | spa |
dcterms.bibliographicCitation | M. Siegert, R.B. Alley, E. Rignot, J. Englander, R. Corell, Twenty-first century sealevel rise could exceed IPCC projections for strong-warming futures, One Earth 3 (2020) 691–703. | spa |
dcterms.bibliographicCitation | H.K.S. Panahi, M. Dehhaghi, J.E. Kinder, T.C. Ezeji, A review on green liquid fuels for the transportation sector: a prospect of microbial solutions to climate change, Biofuel Res. J. 6 (2019) 995–1024. | spa |
dcterms.bibliographicCitation | V. Ant onio, F. Jos e, M. Santos, Energy management system ISO 50001 : 2011 and energy management for sustainable development, Energy Pol. 133 (2019) 110868. | spa |
dcterms.bibliographicCitation | A. Coram, D.W. Katzner, Reducing fossil-fuel emissions: dynamic paths for alternative energy-producing technologies, Energy Econ. 70 (2018) 179–189. | spa |
dcterms.bibliographicCitation | G. Amador, J.D. Forero, A. Rincon, A. Fontalvo, A. Bula, R.V. Padilla, W. Orozco, Characteristics of auto-ignition in internal combustion engines operated with gaseous fuels of variable methane number, J. Energy Resour. Technol. 139 (4) (2017), 042205. | spa |
dcterms.bibliographicCitation | Q. Wang, X. Yang, Investigating the sustainability of renewable energy – an empirical analysis of European Union countries using a hybrid of projection pursuit fuzzy clustering model and accelerated genetic algorithm based on real coding, J. Clean. Prod. 268 (2020) 121940. | spa |
dcterms.bibliographicCitation | T. Ahmad, D. Zhang, A critical review of comparative global historical energy consumption and future demand: the story told so far, Energy Rep. 6 (2020) 1973–1991. | spa |
dcterms.bibliographicCitation | S. Adams, E. Kwame, M. Klobodu, A. Apio, Renewable and nonrenewable energy, regime type and economic growth, Renew. Energy 125 (2018) 755–767. | spa |
dcterms.bibliographicCitation | M. Khzouz, E.I. Gkanas, A. Girella, T. Statheros, C. Milanese, D. Chimica, C. Fisica, Sustainable hydrogen production via LiH hydrolysis for unmanned air vehicle (UAV) applications, Int. J. Hydrogen Energy 45 (2020) 5384–5394. | spa |
dcterms.bibliographicCitation | C. Ghenai, M. Bettayeb, B. Brdjanin, A.K. Hamid, Hybrid solar PV/PEM fuel Cell/ Diesel Generator power system for cruise ship: a case study in Stockholm, Sweden, Case Stud. Therm. Eng. 14 (2019) 100497. | spa |
dcterms.bibliographicCitation | B. Widera, Renewable hydrogen implementations for combined energy storage, transportation and stationary applications, Therm. Sci. Eng. Prog. 16 (2020) 100460. | spa |
dcterms.bibliographicCitation | M. Koc, N. Tukenmez, M. Ozturk, Development and thermodynamic assessment of a novel solar and biomass energy based integrated plant for liquid hydrogen production, Int. J. Hydrogen Energy 45 (2020) 34587–34607. | spa |
dcterms.bibliographicCitation | T. Sinigaglia, F. Lewiski, M. Eduardo, S. Martins, J. Cezar, M. Siluk, Production , storage, fuel stations of hydrogen and its utilization in automotive applications-a review, Int. J. Hydrogen Energy 42 (2017) 24597–24611. | spa |
dcterms.bibliographicCitation | W. Martinez, E. Souza, A. Pedroni, J. Carvalhoa, V. Andrade, E. Sydneyb, Hydrogen: current advances and patented technologies of its renewable production, J. Clean. Prod. (2020) 124970. | spa |
dcterms.bibliographicCitation | P. Olivier, C. Bourasseau, P.B. Bouamama, Low-temperature electrolysis system modelling: a review, Renew. Sustain. Energy Rev. 78 (2017) 280–300. | spa |
dcterms.bibliographicCitation | I. Dincer, C. Acar, Innovation in hydrogen production, Int. J. Hydrogen Energy 42 (2017) 14843–14864. | spa |
dcterms.bibliographicCitation | H. Ambarita, Performance and emission characteristics of a small diesel engine run in dual-fuel (diesel-biogas) mode, Case Stud. Therm. Eng. 10 (2017) 179–191. | spa |
dcterms.bibliographicCitation | Y. Rathore, D. Ramchandani, R.K. Pandey, Experimental investigation of performance characteristics of compression-ignition engine with biodiesel blends of Jatropha oil & coconut oil at fixed compression ratio, Heliyon 5 (11) (2019), e02717. | spa |
dcterms.bibliographicCitation | M. Vijayakumar, P.M. Kumar, Performance and emission characteristics of compression-ignition engine handling biodiesel blends with electronic fumigation, Heliyon 5 (4) (2019), e01480. | spa |
dcterms.bibliographicCitation | R. Ramírez-Restrepo, A. Sagastume-Guti errez, J. Cabello-Eras, B. Hern andez, J. Duarte-Forero, Experimental study of the potential for thermal energy recovery with thermoelectric devices in low displacement diesel engines, Heliyon 7 (11) (2021), e08273. | spa |
dcterms.bibliographicCitation | R. Ramírez, A. Guti errez, J. Eras, K. Valencia, B. Hern andez, J. Duarte, Evaluation of the energy recovery potential of thermoelectric generators in diesel engines, J. Clean. Prod. 241 (2019) 118412. | spa |
dcterms.bibliographicCitation | G. Valencia, C. Acevedo, J. Duarte, Combustion and performance study of lowdisplacement compression ignition engines operating with diesel–biodiesel blends, Appl. Sci. 10 (3) (2020) 907. | spa |
dcterms.bibliographicCitation | M. Shirk, T. Mcguire, G. Neal, D. Haworth, Investigation of a hydrogen-assisted combustion system for a light-duty diesel vehicle, Int. J. Hydrogen Energy 33 (2008) 7237–7244. | spa |
dcterms.bibliographicCitation | N. Castro, M. Toledo, G. Amador, An experimental investigation of the performance and emissions of a hydrogen-diesel dual fuel compression ignition internal combustion engine, Appl. Therm. Eng. 156 (2019) 660–667. | spa |
dcterms.bibliographicCitation | N. Khatri, K.K. Khatri, Hydrogen enrichment on diesel engine with biogas in dual fuel mode, Int. J. Hydrogen Energy 45 (2020) 7128–7140. | spa |
dcterms.bibliographicCitation | U. Rajak, P. Nashine, T. Nath, A. Pugazhendhi, Performance and emissions analysis of a diesel engine using hydrogen enriched n-butanol, diethyl ester and Spirulina microalgae biodiesel, Fuel 271 (2020) 117645. | spa |
dcterms.bibliographicCitation | G. Tripathi, P. Sharma, A. Dhar, A. Sadiki, Computational investigation of diesel injection strategies in hydrogen-diesel dual fuel engine, Sustain. Energy Technol. Assessments 36 (2019) 100543. | spa |
dcterms.bibliographicCitation | M. Talibi, P. Hellier, R. Morgan, C. Lenartowicz, Hydrogen-diesel fuel cocombustion strategies in light duty and heavy duty CI engines, Int. J. Hydrogen Energy 43 (2018) 9046–9058. | spa |
dcterms.bibliographicCitation | W. Tutak, A. Jamrozik, K. Grab-rogali, Hydrogen effects on combustion stability performance and emissions of diesel engine, Int. J. Hydrogen Energy 45 (2020) 19936–19947. | spa |
dcterms.bibliographicCitation | D.T. B al anescu, V.M. Homutescu, Effects of hydrogen-enriched methane combustion on latent heat recovery potential and environmental impact of condensing boilers, Appl. Therm. Eng. 197 (2021). | spa |
dcterms.bibliographicCitation | H.W. Wu, T.T. Hsu, J.Y. He, C.M. Fan, Optimal performance and emissions of diesel/hydrogen-rich gas engine varying intake air temperature and EGR ratio, Appl. Therm. Eng. 124 (2017) 381–392. | spa |
dcterms.bibliographicCitation | N. Saravanan, N. Govindan, An experimental investigation on a diesel engine with hydrogen fuel injection in intake manifold, SAE Tech. Pap. (2008). | spa |
dcterms.bibliographicCitation | C. Vipavanich, S. Chuepeng, S. Skullong, Heat release analysis and thermal efficiency of a single cylinder diesel dual fuel engine with gasoline port injection, Case Stud. Therm. Eng. 12 (2018) 143–148 | spa |
dcterms.bibliographicCitation | A. Mejía, M. Leiva, A. Rinc on, A. Gonzalez, J. Duarte, Experimental assessment of emissions maps of a single-cylinder compression ignition engine powered by diesel and palm oil biodiesel-diesel fuel blends, Case Stud. Therm. Eng. 19 (100163) (2020) 1–13. | spa |
dcterms.bibliographicCitation | P. Dimitriou, M. Kumar, T. Tsujimura, Y. Suzuki, Combustion and emissions characteristics of a hydrogen-diesel dual-fuel engine, Int. J. Hydrogen Energy 43 (29) (2018) 13605–13617. | spa |
dcterms.bibliographicCitation | P. Dimitriou, T. Tsujimura, Y. Suzuki, Low-load hydrogen-diesel dual-fuel engine operation – a combustion efficiency improvement approach, I Int. J. Hydrogen Energy 44 (31) (2019) 17048–17060. | spa |
dcterms.bibliographicCitation | P. Dimitriou, T. Tsujimura, A review of hydrogen as a compression ignition engine fuel, Int. J. Hydrogen Energy 42 (38) (2017) 24470–24486. | spa |
dcterms.bibliographicCitation | H. Koten, Hydrogen effects on the diesel engine performance and emissions, Int. J. Hydrogen Energy 43 (22) (2018) 10511–10519. | spa |
dcterms.bibliographicCitation | P. Rosha, A. Dhir, S. Mohapatra, Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: a review, Renew. Sustain. Energy Rev. 82 (2018) 3333–3349. | spa |
dcterms.bibliographicCitation | V. Chintala, K. Subramanian, Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode, Energy 138 (2017) 197–209. | spa |
dcterms.bibliographicCitation | V. Gnanamoorthi, V. Vimalananth, Effect of hydrogen fuel at higher flow rate under dual fuel mode in CRDI diesel engine, Int. J. Hydrogen Energy 45 (33) (2018) 16874–16889. | spa |
dcterms.bibliographicCitation | P. Sharma, A. Dhar, Effect of hydrogen supplementation on engine performance and emissions, Int. J. Hydrogen Energy 43 (15) (2018) 7570–7580. | spa |
dcterms.bibliographicCitation | V. Chintala, K. Subramanian, A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode, Renew. Sustain. Energy Rev. 70 (2017) 472–491 | spa |
dcterms.bibliographicCitation | C. Deheri, S. Acharya, D. Thatoi, A. Mohanty, A review on performance of biogas and hydrogen on diesel engine in dual fuel mode, Fuel 260 (2020) 116337. | spa |
dcterms.bibliographicCitation | I. Yilmaz, M. Gumus, Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine, Energy 142 (2018) 1104–1113. | spa |
dcterms.bibliographicCitation | A. Jamrozik, K. Grab-Rogali nski, W. Tutak, Hydrogen effects on combustion stability, performance and emission of diesel engine, Int. J. Hydrogen Energy 45 (38) (2020) 19936–19947. | spa |
dcterms.bibliographicCitation | E. Zwoli nska, Y. Sun, A.G. Chmielewski, A. Pawelec, Removal of high concentrations of NOx and SO2 from diesel off-gases using a hybrid electron beam technology, Energy Rep. 6 (2020) 952–964. | spa |
dcterms.bibliographicCitation | T. Pi-qiang, Z. Jian-yong, H. Zhi-yuan, L. Di-ming, D. Ai-min, Effects of fuel properties on exhaust emissions from diesel engines, J. Fuel Chem. Technol. 41 (2013) 347–355. | spa |
dcterms.bibliographicCitation | M.A. Rosen, Environmental sustainability tools in the biofuel industry, Biofuel Res. J. 5 (2018) 751–752. | spa |
dcterms.bibliographicCitation | S. Nag, A. Dhar, A. Gupta, Hydrogen-diesel co-combustion characteristics, vibroacoustics and unregulated emissions in EGR assisted dual fuel engine, Fuel (2022) 307. | spa |
dcterms.bibliographicCitation | C.B. Kumar, D.B. Lata, D. Mahto, Effect of addition of di-tert butyl peroxide (DTBP) on performance and exhaust emissions of dual fuel diesel engine with hydrogen as a secondary fuel, Int. J. Hydrogen Energy 46 (2021) 9595–9612. | spa |
dcterms.bibliographicCitation | M. Karimi, X. Wang, J. Hamilton, M. Negnevitsky, S. Lyden, Status, challenges and opportunities of dual fuel hybrid approaches-a review, Int. J. Hydrogen Energy 46 (2021) 34924–34957. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1016/j.heliyon.2022.e09285. | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.identifier.url | https://www.scopus.com/record/display.uri?eid=2-s2.0-85129533382&doi=10.1016%2fj.heliyon.2022.e09285&origin=inward&txGid=edccdccdfebb38f9f583d445bf5da458 | |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Hydrogen | spa |
dc.subject.keywords | Diesel engine | spa |
dc.subject.keywords | Electrolyzer | spa |
dc.subject.keywords | Partial substitution | spa |
dc.subject.keywords | Exhaust gases | spa |
dc.subject.keywords | Gas emissions | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Química | spa |
dc.publisher.sede | Sede Norte | spa |