Mostrar el registro sencillo del ítem

dc.contributor.authorFernández Rodríguez, Ronield Elías
dc.contributor.otherBolívar-Anillo, Hernando
dc.contributor.otherHoyos Turcios, Carlos
dc.contributor.otherCarrillo García, Laura
dc.contributor.otherSerrano Hernández, María
dc.contributor.otherAbdellah, Ezzanad
dc.date.accessioned2022-11-15T19:42:19Z
dc.date.available2022-11-15T19:42:19Z
dc.date.issued2019-05-30
dc.date.submitted2019-05-19
dc.identifier.urihttps://hdl.handle.net/20.500.12834/835
dc.description.abstractLos microorganismos, especialmente las bacterias, están distribuidos por todo el mundo, desde el suelo, los mares y los ríos hasta el sistema digestivo de los animales y los seres humanos; por lo tanto, las bacterias mantienen una interacción constante con los compuestos utilizados por los seres humanos y los animales como los antibióticos, y con otros microorganismos que pueden ser de la misma especie o de diferentes géneros taxonómicos; esta interacción podría dar lugar a una presión selectiva sobre las bacterias en el medio ambiente y promover el intercambio de material genético, lo que llevaría a una propagación global de la resistencia a los antibióticos y a una afectación mundial de la salud. En este contexto, esta revisión tiene por objeto ofrecer una visión general del papel de los seres humanos, los animales y el medio ambiente en la resistencia bacteriana, con énfasis en los procesos en el suelo y los medios acuáticos y los efectos sobre la salud humana.spa
dc.description.abstractMicroorganisms, especially bacteria, are distributed throughout the world, from the soil, seas and rivers to the digestive system of animals and humans. Therefore, the bacteria maintain a constant interaction with compounds used by humans and animals, such as antibiotics, and with other microorganisms that may be of the same species or of different taxonomic genera. In addition, this interaction could lead to selective pressure on bacteria in the environment and promote the exchange of genetic material, which would allow to a global spread of antibiotic resistance and thus a worldwide affectation on health. In this context, the present review aims to provide an overview of the role of humans, animals and the environment in bacterial resistance, with emphasis on soil and aquatic processes and effects on human health.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceUniversidad del Nortespa
dc.titleResistencia antibiótica: el papel del hombre, los animales y el medio ambientespa
dc.title.alternativeAntibiotic resistance: the role of man, animals and the environmentspa
dcterms.bibliographicCitation1. Pereira A, Pita J. Alexander Fleming (1881-1955): da descoberta da penicilina (1982) ao prémio Nobel (1945). História: revista da Faculdade de Letras da Universidade do Porto, 2018, vol. 6.spa
dcterms.bibliographicCitation2. Carvalho I T, Santos L. Antibiotics in the aquatic environments: a review of the European scenario. Environment International, 2016, vol. 94, p. 736-757. https://doi.org/10.1016/j.envint.2016.06.025.spa
dcterms.bibliographicCitation3. Bartlett J G, Gilbert D N, Spellberg B. Seven ways to preserve the miracle of antibiotics. Clinical Infectious Diseases, 2013, vol. 56, no 10, p. 1445-1450. https://doi.org/10.1093/cid/cit070.spa
dcterms.bibliographicCitation4. Abraham E P, Chain E. An enzyme from bacteria able to destroy penicillin. Nature, 1940, vol. 146, no 3713, p. 837. https://doi.org/10.1038/146837a0.spa
dcterms.bibliographicCitation5. Chambers H F. The changing epidemiology of Staphylococcus aureus?. Emerging infectious diseases, 2001, vol. 7, no 2, p. 178.spa
dcterms.bibliographicCitation6. Navarro F, Miró E, Mirelis B. Lectura interpretada del antibiograma de enterobacterias. Enfermedades Infecciosas y microbiología clínica, 2010, vol. 28, no 9, p. 638-645. https://doi.org/10.1016/j. eimc.2010.05.002.spa
dcterms.bibliographicCitation7. Martínez J L. Antibiotics and antibiotic resistance genes in natural environments. Science, 2008, vol. 321, no 5887, p. 365-367. DOI: 10.1126/science.1159483.spa
dcterms.bibliographicCitation8. Zhu Y G, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 2013, vol. 110, no 9, p. 3435-3440. https://doi.org/10.1073/ pnas.1222743110.spa
dcterms.bibliographicCitation9. Salyers A A, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends in microbiology, 2004, vol. 12, no 9, p. 412-416. https://doi.org/10.1016/j.tim.2004.07.004.spa
dcterms.bibliographicCitation10. Redfield R J. Do bacteria have sex?. Nature Reviews Genetics, 2001, vol. 2, no 8, p. 634. https://doi. org/10.1038/35084593 DO.spa
dcterms.bibliographicCitation11. Clewell D B. (ed.). Bacterial conjugation. Springer Science & Business Media, 2013.spa
dcterms.bibliographicCitation12. Kümmerer K. Resistance in the environment. Journal of antimicrobial Chemotherapy, 2004, vol. 54, no 2, p. 311-320. https://doi.org/10.1093/jac/dkh325.spa
dcterms.bibliographicCitation13. Correia A. Presence and elimination of pharmaceutical compounds in wastewater treatment plants. Worldwide review and national perspective. Boletín de Malariología y Salud Ambiental, 2015, vol. 55, no 1.spa
dcterms.bibliographicCitation14. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, vol. 74, no 3, p. 417-433. DOI:10.1128/MMBR.00016-10.spa
dcterms.bibliographicCitation15. Poirel L, et al. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrobial agents and chemotherapy, 2005, vol. 49, no 8, p. 3523-3525. DOI:10.1128/AAC.49.8.3523– 3525.2005.spa
dcterms.bibliographicCitation16. Humeniuk C, et al. β-Lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrobial agents and chemotherapy, 2002, vol. 46, no 9, p. 3045-3049. DOI: 10.1128/AAC.46.9.3045-3049.2002.spa
dcterms.bibliographicCitation17. Jernberg C, et al. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology, 2010, vol. 156, no 11, p. 3216-3223. DOI: 10.1099/mic.0.040618-0.spa
dcterms.bibliographicCitation18. Sørum H, Sunde M. Resistance to antibiotics in the normal flora of animals. Veterinary research, 2001, vol. 32, no 3-4, p. 227-241. https://doi.org/10.1051/vetres:2001121.spa
dcterms.bibliographicCitation19. Pepper I L, et al. Soil: a public health threat or savior?. Critical Reviews in Environmental Science and Technology, 2009, vol. 39, no 5, p. 416-432. https://doi.org/10.1080/10643380701664748.spa
dcterms.bibliographicCitation20. Grenni P, Ancona V, Caracciolo A. Ecological effects of antibiotics on natural ecosystems: a review. Microchemical Journal, 2018, vol. 136, p. 25-39. https://doi.org/10.1016/j.microc.2017.02.006.spa
dcterms.bibliographicCitation21. Cytryn E. The soil resistome: the anthropogenic, the native, and the unknown. Soil Biology and Biochemistry, 2013, vol. 63, p. 18-23. https://doi.org/10.1016/j.soilbio.2013.03.017.spa
dcterms.bibliographicCitation22. Schlüsener M P, Bester K. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environmental Pollution, 2006, vol. 143, no 3, p. 565-571. https://doi.org/10.1016/j.envpol. 2005.10.049.spa
dcterms.bibliographicCitation23. Pan M, Chu L M. Adsorption and degradation of five selected antibiotics in agricultural soil. Science of the Total Environment, 2016, vol. 545, p. 48-56. https://doi.org/10.1016/j.scitotenv.2015.12.040.spa
dcterms.bibliographicCitation24. Séveno N A, et al. Occurrence and reservoirs of antibiotic resistance genes in the environment. Reviews in medical microbiology, 2002, vol. 13, no 1, p. 15-27.spa
dcterms.bibliographicCitation25. Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 2005, vol. 7, no 11, p. 1673-1685. https://doi.org/10.1111/ j.1462-2920.2005.00891.x.spa
dcterms.bibliographicCitation26. Kopmann C, et al. Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS microbiology ecology, 2013, vol. 83, no 1, p. 125-134. https://doi.org/10.1111/j.1574-6941.2012.01458.x.spa
dcterms.bibliographicCitation27. Martinez J. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental pollution, 2009, vol. 157, no 11, p. 2893-2902. https://doi.org/10.1016/j.envpol. 2009.05.051.spa
dcterms.bibliographicCitation28. Delgado-Baquerizo M, et al. A global atlas of the dominant bacteria found in soil. Science, 2018, vol. 359, no 6373, p. 320-325. DOI: 10.1126/science.aap9516.spa
dcterms.bibliographicCitation29. Wright G D. Antibiotic resistance in the environment: a link to the clinic?. Current opinion in microbiology, 2010, vol. 13, no 5, p. 589-594. https://doi.org/10.1016/j.mib.2010.08.005.spa
dcterms.bibliographicCitation30. D’costa V M, et al. Sampling the antibiotic resistome. Science, 2006, vol. 311, no 5759, p. 374-377. DOI: 10.1126/science.1120800.spa
dcterms.bibliographicCitation31. Perry J, Westman E, Wright G D. The antibiotic resistome: what’s new?. Current opinion in microbiology, 2014, vol. 21, p. 45-50. https://doi.org/10.1016/j.mib.2014.09.002.spa
dcterms.bibliographicCitation32. Riesenfeld C S, Goodman R M, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environmental microbiology, 2004, vol. 6, no 9, p. 981-989. https://doi. org/10.1111/j.1462-2920.2004.00664.x.spa
dcterms.bibliographicCitation33. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science, 1994, vol. 264, no 5157, p. 375-382. DOI: 10.1126/science.8153624.spa
dcterms.bibliographicCitation34. Marshall C G, Lessard I A D, Park I S, Wright G D. Glycopeptide antibiotic resistance genes in glycopeptide- producing organisms. Antimicrobial Agents and Chemotherapy, 1998, vol. 42, no 9, p. 2215- 2220. DOI: 10.1128/AAC.42.9.2215.spa
dcterms.bibliographicCitation35. D’costa V M, et al. Antibiotic resistance is ancient. Nature, 2011, vol. 477, no 7365, p. 457. DOI:10.1038/nature10388.spa
dcterms.bibliographicCitation36. Holvoet K, et al. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Appl. Environ. Microbiol., 2013, vol. 79, no 21, p. 6677-6683. DOI: 10.1128/AEM.01995-13.spa
dcterms.bibliographicCitation37. Kümmerer K. Antibiotics in the aquatic environment–a review–part I. Chemosphere, 2009, vol. 75, no 4, p. 417-434. https://doi.org/10.1016/j.chemosphere.2008.11.086.spa
dcterms.bibliographicCitation38. Nonaka L, Ikeno K, Suzuki S. Distribution of tetracycline resistance gene, tet (M), in gram-positive and gram-negative bacteria isolated from sediment and seawater at a coastal aquaculture site in japan. Microbes and Environments, 2007, vol. 22, no 4, p. 355-364. https://doi.org/10.1264/jsme2.22.355spa
dcterms.bibliographicCitation39. Marti E, Variatza E, Balcazar J. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in microbiology, 2014, vol. 22, no 1, p. 36-41. https://doi.org/10.1016/j.tim.2013.11.001spa
dcterms.bibliographicCitation40. Ojer-Usoz E, et al. High dissemination of extended-spectrum β-lactamase-producing Enterobacteriaceae in effluents from wastewater treatment plants. Water research, 2014, vol. 56, p. 37-47. https:// doi.org/10.1016/j.watres.2014.02.041.spa
dcterms.bibliographicCitation41. Kittinger C, et al. Enterobacteriaceae isolated from the river Danube: antibiotic resistances, with a focus on the presence of ESBL and carbapenemases. PloS one, 2016, vol. 11, no 11, p. e0165820. https:// doi.org/10.1371/journal.pone.0165820spa
dcterms.bibliographicCitation42. Calisto N, Gómez C, Muñoz P. Resistencia a antibióticos en bacterias recolectadas en agua de mar en las proximidades de bases antárticas. En Anales del Instituto de la Patagonia. Universidad de Magallanes, 2018. p. 29-39. http://dx.doi.org/10.4067/S0718-686X2018000300029spa
dcterms.bibliographicCitation43. Miller R V, Gammon K, Day M J. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Canadian journal of microbiology, 2009, vol. 55, no 1, p. 37-45. https://doi.org/10.1139/W08-119spa
dcterms.bibliographicCitation44. Biyela P T, Lin J, Bezuidenhout C C. The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. Water Science and Technology, 2004, vol. 50, no 1, p. 45-50. https://doi.org/10.2166/wst.2004.0014spa
dcterms.bibliographicCitation45. Liu Bo, Pop M. ARDB—antibiotic resistance genes database. Nucleic acids research, 2008, vol. 37, no suppl_1, p. D443-D447. https://doi.org/10.1093/nar/gkn656spa
dcterms.bibliographicCitation46. Schwartz T, et al. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS microbiology ecology, 2003, vol. 43, no 3, p. 325- 335. https://doi.org/10.1111/j.1574-6941.2003.tb01073.xspa
dcterms.bibliographicCitation47. Jacobs C, Frère JM, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell, 1997, vol. 88, no 6, p. 823-832. https://doi.org/10.1016/S0092-8674(00)81928-5spa
dcterms.bibliographicCitation48. Kümmerer K. Antibiotics in the aquatic environment–a review–part II. Chemosphere, 2009, vol. 75, no 4, p. 435-441. https://doi.org/10.1016/j.chemosphere.2008.12.006spa
dcterms.bibliographicCitation49. Miranda C D, Zemelman R. Antibiotic resistant bacteria in fish from the Concepcion Bay, Chile. Marine Pollution Bulletin, 2001, vol. 42, no 11, p. 1096-1102. https://doi.org/10.1016/S0025- 326X(01)00093-5spa
dcterms.bibliographicCitation50. Middleton J H, Ambrose A. Enumeration and antibiotic resistance patterns of fecal indicator organisms isolated from migratory Canada geese (Branta canadensis). Journal of wildlife diseases, 2005, vol. 41, no 2, p. 334-341. https://doi.org/10.7589/0090-3558-41.2.334spa
dcterms.bibliographicCitation51. Labarca J, Araos R. Resistencia antimicrobiana: Problema en aumento y soluciones escasas. Revista chilena de infectología, 2009, vol. 26, p. 8-9. http://dx.doi.org/10.4067/S0716-10182009000300001spa
dcterms.bibliographicCitation52. Van Boeckel T P, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 2014, vol. 14, no 8, p. 742-750. https://doi. org/10.1016/S1473-3099(14)70780-7spa
dcterms.bibliographicCitation53. Wirtz V J, Dreser A, Gonzales R. Tendencias en el consumo de antibióticos en ocho países latinoamericanos entre 1997 y 2007. Revista Panamericana de Salud Pública, 2010, vol. 27, no 3, p. 219-226.spa
dcterms.bibliographicCitation54. Klein E Y, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences, 2018, vol. 115, no 15, p. E3463-E3470. https://doi.org/10.1073/pnas.1717295115spa
dcterms.bibliographicCitation55. Alós JI. Resistencia bacteriana a los antibióticos: una crisis global. Enfermedades infecciosas y microbiología clínica, 2015, vol. 33, no 10, p. 692-699. https://doi.org/10.1016/j.eimc.2014.10.004spa
dcterms.bibliographicCitation56. O’neill J I M. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on antimicrobial resistance, 2014, vol. 1, no 1, p. 1-16.spa
dcterms.bibliographicCitation57. Gupta K, Hooton T M, Stamm W E. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Annals of internal medicine, 2001, vol. 135, no 1, p. 41-50. DOI: 10.7326/0003-4819-135-1-200107030-00012spa
dcterms.bibliographicCitation58. De Kraker M EA, et al. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS medicine, 2011, vol. 8, no 10, p. e1001104. https://doi.org/10.1371/journal.pmed.1001104spa
dcterms.bibliographicCitation59. Cuevas O, et al. Evolution of the antimicrobial resistance of Staphylococcus spp. in Spain: five nationwide prevalence studies, 1986 to 2002. Antimicrobial agents and chemotherapy, 2004, vol. 48, no 11, p. 4240-4245. DOI: 10.1128/AAC.48.11.4240-4245.2004spa
dcterms.bibliographicCitation60. Oteo J, et al. Antibiotic resistance in 3113 blood isolates of Staphylococcus aureus in 40 Spanish hospitals participating in the European Antimicrobial Resistance Surveillance System (2000–2002). Journal of Antimicrobial Chemotherapy, 2004, vol. 53, no 6, p. 1033-1038. https://doi.org/10.1093/ jac/dkh214spa
dcterms.bibliographicCitation61. Chiang FY, Climo M. Efficacy of linezolid alone or in combination with vancomycin for treatment of experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy, 2003, vol. 47, no 9, p. 3002-3004. DOI: 10.1128/AAC.47.9.3002-3004.2003spa
dcterms.bibliographicCitation62. Kollef M H, et al. New antimicrobial agents for methicillin-resistant’Staphylococcus aureus’. Critical Care and Resuscitation, 2009, vol. 11, no 4, p. 282.spa
dcterms.bibliographicCitation63. Long S, et al. PBP2a mutations causing high-level ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrobial agents and chemotherapy, 2014, vol. 58, no 11, p. 6668-6674. DOI: 10.1128/AAC.03622-14spa
dcterms.bibliographicCitation64. Villalobos A P, Barrero L I, Rivera S M, Ovalle M V, Valera D. (2014). Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011. Biomédica, 34(1), 67-80.spa
dcterms.bibliographicCitation65. Oldfield E, Feng X. Resistance-resistant antibiotics. Trends in Pharmacological Sciences, 2014, vol. 35, no 12, p. 664-674. https://doi.org/10.1016/j.tips.2014.10.007spa
dcterms.bibliographicCitation66. Li J, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. The Lancet infectious diseases, 2006, vol. 6, no 9, p. 589-601. https://doi.org/10.1016/S1473- 3099(06)70580-1spa
dcterms.bibliographicCitation67. Van Hoek A H, et al. Acquired antibiotic resistance genes: an overview. Frontiers in microbiology, 2011, vol. 2, p. 203. https://doi.org/10.3389/fmicb.2011.00203spa
dcterms.bibliographicCitation68. Coutinho F, et al. Antibiotic resistance in aquatic environments of Rio de Janeiro, Brazil. InTech, 2013. http://dx.doi.org/10.5772/54638spa
dcterms.bibliographicCitation69. Olaechea P M, et al. Epidemiología e impacto de las infecciones nosocomiales. Medicina Intensiva, 2010, vol. 34, no 4, p. 256-267. doi:10.1016/j.medin.2009.11.013spa
dcterms.bibliographicCitation70. Farinas M, Martínez-Martínez L. Infecciones causadas por bacterias gramnegativas multirresistentes: enterobacterias, Pseudomonas aeruginosa, Acinetobacter baumannii y otros bacilos gramnegativos no fermentadores. Enfermedades infecciosas y microbiología clinica, 2013, vol. 31, no 6, p. 402- 409. https://doi.org/10.1016/j.eimc.2013.03.016spa
dcterms.bibliographicCitation71. Martin F, et al. Estudio económico de la infección nosocomial en una unidad de cuidados intensivos pediátricos. Revista Cubana de Pediatría, 2000, vol. 72, no 1, p. 21-26.spa
dcterms.bibliographicCitation72. Castro-Orozco R, et al. Patrones de resistencia antimicrobiana en uropatógenos gramnegativos aislados de pacientes ambulatorios y hospitalizados Cartagena, 2005-2008. Revista de salud pública, 2010, vol. 12, p. 1010-1019.spa
dcterms.bibliographicCitation73. Rodríguez‐Baño J, et al. Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clinical microbiology and infection, 2008, vol. 14, no 3, p. 276-278. https://doi. org/10.1111/j.1469-0691.2007.01916.xspa
dcterms.bibliographicCitation74. Alvarez M, Benavides D. Aplicación de las normas de bioseguridad en el cuidado de enfermería en pacientes que ingresan al área de infectología Hospital Vicente Corral Moscoso. Cuenca, 2013. 2014. Tesis de Licenciatura.spa
dcterms.bibliographicCitation75. Rodríguez L, et al. Uso prudente de antimicrobianos y propuestas de mejora en veterinaria. Enfermedades Infecciosas y Microbiología Clínica, 2010, vol. 28, p. 40-44. https://doi.org/10.1016/S0213- 005X(10)70042-2spa
dcterms.bibliographicCitation76. Phillips I, et al. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. Journal of Antimicrobial Chemotherapy, 2004, vol. 53, no 1, p. 28-52. https:// doi.org/10.1093/jac/dkg483spa
dcterms.bibliographicCitation77. Nogales B, et al. Anthropogenic perturbations in marine microbial communities. FEMS Microbiology reviews, 2011, vol. 35, no 2, p. 275-298. https://doi.org/10.1111/j.1574-6976.2010.00248.xspa
dcterms.bibliographicCitation78. Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields. Current opinion in microbiology, 2011, vol. 14, no 3, p. 236-243. https://doi.org/ 10.1016/j.mib.2011.04.009spa
dcterms.bibliographicCitation79. Teuber M. Veterinary use and antibiotic resistance. Current opinion in microbiology, 2001, vol. 4, no 5, p. 493-499. https://doi.org/10.1016/S1369-5274(00)00241-1spa
dcterms.bibliographicCitation80. Enne V I, et al. A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E. coli from cattle and sheep in Great Britain at slaughter. FEMS Microbiology Letters, 2008, vol. 278, no 2, p. 193-199. https://doi.org/10.1111/j.1574- 6968.2007.00991.xspa
dcterms.bibliographicCitation81. Mckinney C W, et al. Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environmental science & technology, 2010, vol. 44, no 16, p. 6102-6109. DOI: 10.1021/es9038165spa
dcterms.bibliographicCitation82. Peak N, et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environmental microbiology, 2007, vol. 9, no 1, p. 143-151. https://doi.org/10.1111/j.1462-2920.2006.01123.xspa
dcterms.bibliographicCitation83. Binh C, et al. Similar bacterial community structure and high abundance of sulfonamide resistance genes in field-scale manures. Manure: management, uses and environmental impacts. Nova Science Publishers, Hauppauge, NY, 2010, p. 141-166.spa
dcterms.bibliographicCitation84. Aarestrup F, et al. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrobial Agents and chemotherapy, 2001, vol. 45, no 7, p. 2054-2059. DOI: 10.1128/AAC.45.7.2054- 2059.2001spa
dcterms.bibliographicCitation85. Klare I, et al. Decreased incidence of VanA-type vancomycin-resistant enterococci isolated from poultry meat and from fecal samples of humans in the community after discontinuation of avoparcin usage in animal husbandry. Microbial Drug Resistance, 1999, vol. 5, no 1, p. 45-52. https://doi. org/10.1089/mdr.1999.5.45spa
dcterms.bibliographicCitation86. Valdez J. Adición de fuentes antioxidantes al diluyente de semen bovino y sus efectos posdescongelamiento. 2018. Tesis Doctoral. Universidad Autonoma De Chihuahua.spa
dcterms.bibliographicCitation87. Ungemach F R, Müller-Bahrdt D, Abraham G. Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. International Journal of Medical Microbiology, 2006, vol. 296, p. 33-38. https://doi.org/10.1016/j.ijmm.2006.01.05spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.14482/sun.36.1.615
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsresistencia bacteriana, antibióticos, genes de resistencia antibiótica.spa
dc.subject.keywordsbacterial resistance, antibiotics, antibiotic resistance genes.spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por