Mostrar el registro sencillo del ítem
Time-reversal symmetry breaking in a square lattice
dc.contributor.author | Jimenez, Kevin | |
dc.contributor.other | Reslen, Jose | |
dc.date.accessioned | 2022-11-15T19:38:12Z | |
dc.date.available | 2022-11-15T19:38:12Z | |
dc.date.issued | 2021-04-06 | |
dc.date.submitted | 2020-11-22 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/832 | |
dc.description.abstract | The bulk conductivity of a two-dimensional system is studied assuming that time-reversal symmetry is broken by internal mechanisms. The study is carried out by direct diagonalization in order to explore the nonlinear-response provoked by the inclusion of an electric field in the system’s Hamiltonian. The system displays a quantized conductivity that depends on the intensity of the field and under specific conditions the conductivity limit at zero electric field displays a nonvanishing value. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Journal of Physics Communications | spa |
dc.title | Time-reversal symmetry breaking in a square lattice | spa |
dcterms.bibliographicCitation | [1] Jimenez K and Reslen J 2016 Thermodynamic signatures of an underlying quantum phase transition: A grand canonical approach Phys. Lett.A 380 2603 | spa |
dcterms.bibliographicCitation | [2] Sakurai J 1994 Symmetry in Quantum Mechanics Modern Quantum Mechanics, Revised Edition (New York: Addison-Wesley) 4 248–82 | spa |
dcterms.bibliographicCitation | [3] Hasan M and Kane C 2010 Colloquium: topological insulators Rev. Mod. Phys. 82 3045 | spa |
dcterms.bibliographicCitation | [4] Qi X and Zhang S 2010 The quantum spin Hall effect and topological insulators Phys. Today 63 33 | spa |
dcterms.bibliographicCitation | [5] Qi X and Zhang S 2011 Topological insulators and superconductors Reviews of Modern Physics 83 1057 | spa |
dcterms.bibliographicCitation | [6] Kane C and Mele E 2005 Z2Topological order and the quantum spin hall effect Phys. Rev. Lett. 95 146802 | spa |
dcterms.bibliographicCitation | [7] Thouless D, Kohmoto M, Nightingale M and den Nijs M 1982 Quantized Hall conductance in a two-dimensional periodic potential Phys. Rev. Lett. 49 405 | spa |
dcterms.bibliographicCitation | [8] Laughlin R 1981 Quantized Hall conductivity in two dimensions Phys. Rev. B 23 5632 | spa |
dcterms.bibliographicCitation | [9] Sinova J, Valenzuela S, Wunderlich J, Back C and Jungwirth T 2015 Spin Hall effects Review of Modern Physics 87 1213 | spa |
dcterms.bibliographicCitation | [10] Kohmoto M 1985 Topological invariant and quantization of the Hall conductance Ann. Phys. 160 343 | spa |
dcterms.bibliographicCitation | [11] Weng H, Yu R, Hu X, Dai X and Fang Z 2015 Quantum anomalous Hall effect and related topological electronic states Adv. Phys. 64 227 | spa |
dcterms.bibliographicCitation | [12] He K, Wang Y and Xue Q 2014 Quantum anomalous Hall effect Natl Sci. Rev. 1 38 | spa |
dcterms.bibliographicCitation | [13] Roushan P, Seo J, Parker C, Hor Y, Hsieh D, Qian D, Richardella A, Hasan M, Cava R and Yazdani A 2009 Topological surface states protected from backscattering by chiral spin texture Nature 460 1106 | spa |
dcterms.bibliographicCitation | [14] Zhang T et al 2009 Experimental demonstration of topological surface states protected by time-reversal symmetry Phys. Rev. Lett. 103 266803 | spa |
dcterms.bibliographicCitation | [15] Chang Cet al 2013 Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator Science 340 167 | spa |
dcterms.bibliographicCitation | [16] Checkelsky J, Yoshimi R, Tsukazaki A, Takahashi K, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator Nat. Phys. 10 731 | spa |
dcterms.bibliographicCitation | [17] Chang C, Zhao W, Kim D, Zhang H, Assaf B, Heiman D, Zhang S, Liu C, Chan M and Moodera J 2015 High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator Science 14 473 | spa |
dcterms.bibliographicCitation | [18] Yu R, Zhang W, Zhang H, Zhang S, Dai X and Fang Z 2010 Quantized anomalous Hall effect in magnetic topological insulators Science 329 61 | spa |
dcterms.bibliographicCitation | [19] Galitski V and Spielman I 2013 Spin-orbit coupling in quantum gases Nature 494 4 | spa |
dcterms.bibliographicCitation | [19] Galitski V and Spielman I 2013 Spin-orbit coupling in quantum gases Nature 494 4 | spa |
dcterms.bibliographicCitation | [21] Kubo R 1957 Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problemsJ. Phys. Soc. Jpn. 12 570 | spa |
dcterms.bibliographicCitation | [22] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp LW, Qi X L and Zhang S C 2007 Quantum spin Hall insulator state in HgTe quantum wells Science 318 766 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1088/2399-6528/ABF024 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | time-reversal symmetry breaking, topological insulators, anomalous quantum hall effect | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Física | spa |
dc.publisher.sede | Sede Norte | spa |