Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Fernández, Joaquín
dc.contributor.otherCano, Heidis
dc.contributor.otherGuerra, Yoleima
dc.contributor.otherPuello Polo, Esneyder
dc.contributor.otherRíos Rojas, John Fredy
dc.contributor.otherVivas Reyes, Ricardo
dc.contributor.otherOviedo, Juan
dc.date.accessioned2022-11-15T19:37:40Z
dc.date.available2022-11-15T19:37:40Z
dc.date.issued2022-04-20
dc.date.submitted2022-03-01
dc.identifier.citationHernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents ofWastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920. https://doi.org/10.3390/su14094920spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/829
dc.description.abstractIn this research, the presence of microplastics was detected through a differential scanning calorimetry (DSC) analysis of three wastewater treatment plants. One of these plants applied only a preliminary treatment stage while the others applied up to a secondary treatment stage to evaluate their effectiveness. The results showed the presence of polyethylene (PE), polystyrene (PS), polypropylene (PP) and polyethylene terephthalate (PET), which were classified as fragments, fibers or granules. During the evaluation of the plants, it was determined that the preliminary treatment did not remove more than 58% of the microplastics, while the plants applying up to a secondary treatment with activated sludge achieved microplastic removal effectiveness between 90% and 96.9%.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceSustainabilityspa
dc.titleIdentification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC)spa
dcterms.bibliographicCitationPicó, Y.; Soursou, V.; Alfarhan, A.H.; El-Sheikh,M.A.; Barceló, D. First evidence of microplastics occurrence in mixed surface and treated wastewater from two major Saudi Arabian cities and assessment of their ecological risk. J. Hazard. Mater. 2021, 416, 125747. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationMallow, O.; Spacek, S.; Schwarzböck, T.; Fellner, J.; Rechberger, H. A new thermoanalytical method for the quantification of microplastics in industrial wastewater. Environ. Pollut. 2019, 259, 113862. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHamidian, A.H.; Ozumchelouei, E.J.; Feizi, F.; Wu, C.; Zhang, Y.; Yang, M. A review on the characteristics of microplastics in wastewater treatment plants: A source for toxic chemicals. J. Clean. Prod. 2021, 295, 126480. [CrossRef]spa
dcterms.bibliographicCitationHidayaturrahman, H.; Lee, T.-G. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar. Pollut. Bull. 2019, 146, 696–702. [CrossRef]spa
dcterms.bibliographicCitationExpósito, N.; Rovira, J.; Sierra, J.; Folch, J.; Schuhmacher,M.Microplastics levels, size,morphology and composition inmarine water, sediments and sand beaches. Case study of Tarragona coast (westernMediterranean). Sci. Total Environ. 2021, 786, 147453. [CrossRef]spa
dcterms.bibliographicCitationBogdanowicz, A.; Zubrowska-Sudol, M.; Krasinski, A.; Sudol, M. Cross-Contamination as a Problem in Collection and Analysis of Environmental Samples Containing Microplastics—A Review. Sustainability 2021, 13, 12123. [CrossRef]spa
dcterms.bibliographicCitationPrajapati, S.; Beal,M.;Maley, J.; Brinkmann,M. Qualitative and quantitative analysis ofmicroplastics andmicrofiber contamination in effluents of the City of Saskatoon wastewater treatment plant. Environ. Sci. Pollut. Res. 2021, 28, 32545–32553. [CrossRef]spa
dcterms.bibliographicCitationYuan, F.; Zhao, H.; Sun, H.; Zhao, J.; Sun, Y. Abundance, morphology, and removal efficiency of microplastics in two wastewater treatment plants in Nanjing, China. Environ. Sci. Pollut. Res. 2020, 28, 9327–9337. [CrossRef]spa
dcterms.bibliographicCitationCao, Y.;Wang, Q.; Ruan, Y.;Wu, R.; Chen, L.; Zhang, K.; Lam, K.S.P. Intra-day microplastic variations in wastewater: A case study of a sewage treatment plant in Hong Kong. Mar. Pollut. Bull. 2020, 160, 111535. [CrossRef]spa
dcterms.bibliographicCitationUheida, A.; Mejía, H.G.; Abdel-Rehim, M.; Hamd, W.; Dutta, J. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J. Hazard. Mater. 2020, 406, 124299. [CrossRef]spa
dcterms.bibliographicCitationMaddah, H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016, 6, 1–11.spa
dcterms.bibliographicCitationLu, Y.; Zhang, Y.; Deng, Y.; Jiang,W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H.-Q. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSchirinzi, G.F.; Llorca, M.; Seró, R.; Moyano, E.; Barceló, D.; Abad, E.; Farré, M. Trace analysis of polystyrene microplastics in natural waters. Chemosphere 2019, 236, 124321. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationXu, Z.; Bai, X.; Ye, Z. Removal and generation of microplastics in wastewater treatment plants: A review. J. Clean. Prod. 2021, 291, 125982. [CrossRef]spa
dcterms.bibliographicCitationHabib, R.Z.; Al Kendi, R.; Thiemann, T. The Effect ofWastewater Treatment Plants on Retainment of Plastic Microparticles to Enhance Water Quality—A Review. J. Environ. Prot. 2021, 12, 161–195. [CrossRef]spa
dcterms.bibliographicCitationTaurino, R.; Pozzi, P.; Zanasi, T. Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling. Waste Manag. 2010, 30, 2601–2607. [CrossRef]spa
dcterms.bibliographicCitationOkoffo, E.D.; O’Brien, S.; O’Brien, J.W.; Tscharke, B.J.; Thomas, K.V.Wastewater treatment plants as a source of plastics in the environment: A review of occurrence, methods for identification, quantification and fate. Environ. Sci. Water Res. Technol. 2019, 5, 1908–1931. [CrossRef]spa
dcterms.bibliographicCitationSchindler, A.; Doedt, M.; Gezgin, ¸S.; Menzel, J.; Schmölzer, S. Identification of polymers by means of DSC, TG, STA and computer-assisted database search. J. Therm. Anal. 2017, 129, 833–842. [CrossRef]spa
dcterms.bibliographicCitationEdo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2019, 259, 113837. [CrossRef]spa
dcterms.bibliographicCitationBratovcic, A. Degradation ofMicro- and Nano-Plastics by PhotocatalyticMethods. J. Nanosci. Nanotechnol. Appl. 2017, 3, 1–9. [CrossRef]spa
dcterms.bibliographicCitationFranco, A.; Arellano, J.; Albendín, G.; Rodríguez-Barroso, R.; Zahedi, S.; Quiroga, J.; Coello, M. Mapping microplastics in Cadiz (Spain): Occurrence of microplastics in municipal and industrial wastewaters. J. Water Process Eng. 2020, 38, 101596. [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2020, 263, 128027. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSutton, R.; Mason, S.A.; Stanek, S.K.;Willis-Norton, E.;Wren, I.F.; Box, C. Microplastic contamination in the San Francisco Bay, California, USA. Mar. Pollut. Bull. 2016, 109, 230–235. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationZiajahromi, S.; Neale, P.A.; Silveira, I.T.; Chua, A.; Leusch, F.D. An audit of microplastic abundance throughout three Australian wastewater treatment plants. Chemosphere 2020, 263, 128294. [CrossRef]spa
dcterms.bibliographicCitationHabib, R.Z.; al Kindi, R.; Thiemann, T. The Effect ofWastewater Treatment Methods on the Retainment of Plastic Microparticles. In Wastewater Treatment; IntechOpen: London, UK, 2021. [CrossRef]spa
dcterms.bibliographicCitationCristaldi, A.; Fiore,M.; Zuccarello, P.; Conti, G.O.; Grasso, A.; Nicolosi, I.; Copat, C.; Ferrante,M. Efficiency ofWastewater Treatment Plants (WWTPs) forMicroplastic Removal: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8014. [CrossRef]spa
dcterms.bibliographicCitationAlvim, C.B.; Bes-Piá, M.; Mendoza-Roca, J.-A. Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants. Chem. Eng. J. 2020, 402, 126293. [CrossRef]spa
dcterms.bibliographicCitationBitter,H.; Lackner, S. First quantification of semi-crystallinemicroplastics in industrialwastewaters.Chemosphere 2020, 258, 127388. [CrossRef]spa
dcterms.bibliographicCitationHeo, N.W.; Hong, S.H.; Han, G.M.; Hong, S.; Lee, J.; Song, Y.K.; Jang, M.; Shim, W.J. Distribution of small plastic debris in cross-section and high strandline on Heungnam beach, South Korea. Ocean Sci. J. 2013, 48, 225–233. [CrossRef]spa
dcterms.bibliographicCitationHidalgo-Ruz, V.; Thiel, M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): A study supported by a citizen science project. Mar. Environ. Res. 2013, 87–88, 12–18. [CrossRef]spa
dcterms.bibliographicCitationBank, M.S. Microplastic in the Environment: Pattern and Process; Springer: Berlin/Heidelberg, Germany, 2022. [CrossRef]spa
dcterms.bibliographicCitationShim,W.J.; Hong, S.H.; Eo, S.E. Identificationmethods inmicroplastic analysis: A review. Anal. Methods 2016, 9, 1384–1391. [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHe, S.; Jia, M.; Xiang, Y.; Song, B.; Xiong, W.; Cao, J.; Peng, H.; Yang, Y.; Wang, W.; Yang, Z.; et al. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. J. Hazard. Mater. 2021, 424, 127286. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef]spa
dcterms.bibliographicCitationBitter, H.; Lackner, S. Fast and easy quantification of semi-crystalline microplastics in exemplary environmental matrices by differential scanning calorimetry (DSC). Chem. Eng. J. 2021, 423, 129941. [CrossRef]spa
dcterms.bibliographicCitationMajewsky, M.; Bitter, H.; Eiche, E.; Horn, H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci. Total Environ. 2016, 568, 507–511. [CrossRef]spa
dcterms.bibliographicCitationMansa, R.; Zou, S. Thermogravimetric analysis of microplastics: A mini review. Environ. Adv. 2021, 5, 100117. [CrossRef]spa
dcterms.bibliographicCitationChialanza, M.R.; Sierra, I.; Parada, A.P.; Fornaro, L. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry. Environ. Sci. Pollut. Res. 2018, 25, 16767–16775. [CrossRef]spa
dcterms.bibliographicCitationWerme, C.; Codiga, D.; Libby, P.; Carroll; Charlestra, L.; Keay, K. 2020 Outfall Monitoring Overview; MassachusettsWater Resources Authority: Boston, MA, USA, 2021.spa
dcterms.bibliographicCitationBirocchi, P.; Dottori, M.; Costa, C.D.G.R.; Leite, J.R.B. Study of three domestic sewage submarine outfall plumes through the use of numerical modeling in the São Sebastião channel, São Paulo state, Brazil. Reg. Stud. Mar. Sci. 2021, 42, 101647. [CrossRef]spa
dcterms.bibliographicCitationZiajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D.L. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017, 112, 93–99. [CrossRef]spa
dcterms.bibliographicCitationShabaka, S.H.; Ghobashy, M.; Marey, R.S. Identification of marine microplastics in Eastern Harbor, Mediterranean Coast of Egypt, using differential scanning calorimetry. Mar. Pollut. Bull. 2019, 142, 494–503. [CrossRef]spa
dcterms.bibliographicCitationTuran, N.B.; Erkan, H.S.; Engin, G.O. Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Saf. Environ. Prot. 2020, 146, 77–84. [CrossRef]spa
dcterms.bibliographicCitationChoong, W.S.; Hadibarata, T.; Yuniarto, A.; Tang, K.H.D.; Abdullah, F.; Syafrudin, M.; Al Farraj, D.A.; Al-Mohaimeed, A.M. Characterization of microplastics in the water and sediment of Baram River estuary, Borneo Island.Mar. Pollut. Bull. 2021, 172, 112880. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLiu, W.; Zhang, J.; Liu, H.; Guo, X.; Zhang, X.; Yao, X.; Cao, Z.; Zhang, T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environ. Int. 2020, 146, 106277. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationMintenig, S.; Int-Veen, I.; Löder,M.; Primpke, S.; Gerdts, G. Identification ofmicroplastic in effluents of waste water treatment plants using focal plane array-basedmicro-Fourier-transforminfrared imaging.Water Res. 2017, 108, 365–372. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationMahon, A.M.; O’Connell, B.; Healy, M.; O’Connor, I.; Officer, R.; Nash, R.; Morrison, L. Microplastics in Sewage Sludge: Effects of Treatment. Environ. Sci. Technol. 2016, 51, 810–818. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSiddiqui, M.N.; Gondal, M.A.; Redhwi, H.H. Identification of different type of polymers in plastics waste. J. Environ. Sci. Health Part A 2008, 43, 1303–1310. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/su14094920
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85129226746&doi=10.3390%2fsu14094920&partnerID=40&md5=ec1e8f9c1e8e881eead11dac2d95e438
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsefficiencyspa
dc.subject.keywordswastewater treatment plantsspa
dc.subject.keywordsmicroplasticsspa
dc.subject.keywordspollutionspa
dc.subject.keywordsremovalspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineQuímicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por