Mostrar el registro sencillo del ítem

dc.contributor.authorSuárez Martínez, Dayra
dc.contributor.otherAngulo Mercado, Edgardo
dc.contributor.otherMercado Martínez, Ivan
dc.contributor.otherVacca Jimeno, Victor
dc.contributor.otherTapia Larios, Claudia
dc.contributor.otherCubillán, Néstor
dc.date.accessioned2022-11-15T19:37:33Z
dc.date.available2022-11-15T19:37:33Z
dc.date.issued2022-04-14
dc.date.submitted2022-02-03
dc.identifier.citationSuárez-Martínez D, Angulo-Mercado E, Mercado-Martínez I, Vacca-Jimeno V, Tapia-Larios C, Cubillán N. Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass. ACS Omega. 2022 Apr 14;7(16):14128-14137. doi: 10.1021/acsomega.2c00696spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/828
dc.description.abstractMicroalgae are used as a lipid source for different applications, such as cosmetics and biofuel. The nonliving biomass and the byproduct from the lipid extraction procedure can efficiently remove antibiotics. This work has explored the potential use of Chlorella sp. biomasses for tetracycline (Tc) removal from highly concentrated aqueous media. Non-living biomass (NLB) is the biomass before the lipid extraction procedure, while lipid-extracted biomass (LEB) is the byproduct mentioned before. LEB removed 76.9% of Tc at 40 mg/L initial concentration and 40 mg of biomass, representing an adsorption capacity of 19.2 mg/g. Subsequently, NLB removed 68.0% of Tc at 50 mg/L and 60 mg of biomass, equivalent to 14.2 mg/g of adsorptive capacity. These results revealed an enhanced removal capacity by LEB compared with NLB and other microalgae-based materials. On the other hand, the adsorption kinetics followed the pseudo-second-order and Elovich models, suggesting chemisorption with interactions between adsorbates. The adsorption isotherms indicate a multilayer mechanism on a heterogeneous surface. Additionally, the interactions between the surface and the first layer of tetracycline are weak, and the formation of the subsequent layers is favored. The Chlorella sp. biomass after the lipid extraction process is a promising material for removing tetracycline; moreover, the use of this residue contributes to the zero-waste strategy.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceACS Omegaspa
dc.titleEnhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomassspa
dcterms.bibliographicCitationGrossman, T. H. Tetracycline Antibiotics and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, No. a025387.spa
dcterms.bibliographicCitationCarvalho, I. T.; Santos, L. Antibiotics in the Aquatic Environments: A Review of the European Scenario. Environ. Intspa
dcterms.bibliographicCitationGranados-Chinchilla, F.; Rodríguez, C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. J. Anal. Methods Chem. 2017, 2017, No. 1315497.spa
dcterms.bibliographicCitationZiółkowski, H.; Jasiecka-Mikołajczyk, A.; Madej-Śmiechowska, H.; Janiuk, J.; Zygmuntowicz, A.; Dąbrowski, M. Comparative Pharmacokinetics of Chlortetracycline, Tetracycline, Minocycline and Tigecycline in Broiler Chickens. Poult. Sci. 2020, 99, 4750−4757.spa
dcterms.bibliographicCitationMichael, C. A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Front. Public Health 2014, 2, 145.spa
dcterms.bibliographicCitationJavid, A.; Mesdaghinia, A.; Nasseri, S.; Mahvi, A. H.; Alimohammadi, M.; Gharibi, H. Assessment of Tetracycline Contamination in Surface and Groundwater Resources Proximal to Animal Farming Houses in Tehran, Iran. J. Environ. Health Sci. Eng. 2016, 14, 4.spa
dcterms.bibliographicCitationWang, Z.; Chen, Q.; Zhang, J.; Dong, J.; Yan, H.; Chen, C.; Feng, R. Characterization and Source Identification of Tetracycline Antibiotics in the Drinking Water Sources of the Lower Yangtze River. J. Environ. Manage. 2019, 244, 13−22.spa
dcterms.bibliographicCitationKim, Y. B.; Seo, K. W.; Jeon, H. Y.; Lim, S. K.; Sung, H. W.; Lee, Y. J. Molecular Characterization of Erythromycin and Tetracycline- Resistant Enterococcus Faecalis Isolated from Retail Chicken Meats. Poult. Sci. 2019, 98, 977−983.spa
dcterms.bibliographicCitationPena, A.; Paulo, M.; Silva, L. J. G.; Seifrtová, M.; Lino, C. M.; Solich, P. Tetracycline Antibiotics in Hospital and Municipal Wastewaters: A Pilot Study in Portugal. Anal. Bioanal. Chem. 2010, 396, 2929−2936.spa
dcterms.bibliographicCitationYi, Q.; Gao, Y.; Zhang, H.; Zhang, H.; Zhang, Y.; Yang, M. Establishment of a Pretreatment Method for Tetracycline Production Wastewater Using Enhanced Hydrolysis. Chem. Eng. J. 2016, 300, 139−145.spa
dcterms.bibliographicCitationLiu, H.; Xu, G.; Li, G. Preparation of Porous Biochar Based on Pharmaceutical Sludge Activated by NaOH and Its Application in the Adsorption of Tetracycline. J. Colloid Interface Sci. 2021, 587, 271− 278.spa
dcterms.bibliographicCitationDaghrir, R.; Drogui, P. Tetracycline Antibiotics in the Environment: A Review. Environ. Chem. Lett. 2013, 11, 209−227.spa
dcterms.bibliographicCitationZhang, N.; Chen, J.; Fang, Z.; Tsang, E. P. Ceria Accelerated Nanoscale Zerovalent Iron Assisted Heterogenous Fenton Oxidation of Tetracycline. Chem. Eng. J. 2019, 369, 588−599.spa
dcterms.bibliographicCitationZhang, S.; Song, H.; Yang, X.; Yang, K.; Wang, X. Effect of Electrical Stimulation on the Fate of Sulfamethoxazole and Tetracycline with Their Corresponding Resistance Genes in Three- Dimensional Biofilm-Electrode Reactors. Chemosphere 2016, 164, 113−119.spa
dcterms.bibliographicCitationLin, Y.; Xu, S.; Li, J. Fast and Highly Efficient Tetracyclines Removal from Environmental Waters by Graphene Oxide Functionalized Magnetic Particles. Chem. Eng. J. 2013, 225, 679−685.spa
dcterms.bibliographicCitationZhang, L.; Song, X.; Liu, X.; Yang, L.; Pan, F.; Lv, J. Studies on the Removal of Tetracycline by Multi-Walled Carbon Nanotubes. Chem. Eng. J. 2011, 178, 26−33.spa
dcterms.bibliographicCitationBernaerts, T. M. M.; Gheysen, L.; Kyomugasho, C.; Jamsazzadeh Kermani, Z.; Vandionant, S.; Foubert, I.; Hendrickx, M. E.; Van Loey, A. M. Comparison of Microalgal Biomasses as Functional Food Ingredients: Focus on the Composition of Cell Wall Related Polysaccharides. Algal Res. 2018, 32, 150−161.spa
dcterms.bibliographicCitationMenegazzo, M. L.; Fonseca, G. G. Biomass Recovery and Lipid Extraction Processes for Microalgae Biofuels Production: A Review. Renew. Sustain. Energy Rev. 2019, 107, 87−107.spa
dcterms.bibliographicCitationDe Luca, M.; Pappalardo, I.; Limongi, A. R.; Viviano, E.; Radice, R. P.; Todisco, S.; Martelli, G.; Infantino, V.; Vassallo, A. Lipids from Microalgae for Cosmetic Applications. Cosmetics 2021, 8, 52.spa
dcterms.bibliographicCitationosta, J. A. V.; Freitas, B. C. B.; Moraes, L.; Zaparoli, M.; Morais, M. G. Progress in the Physicochemical Treatment of Microalgae Biomass for Value-Added Product Recovery. Bioresour. Technol. 2020, 301, No. 122727.spa
dcterms.bibliographicCitationYe, C.; Mu, D.; Horowitz, N.; Xue, Z.; Chen, J.; Xue, M.; Zhou, Y.; Klutts, M.; Zhou, W. Life Cycle Assessment of Industrial Scale Production of Spirulina Tablets. Algal Res. 2018, 34, 154−163.spa
dcterms.bibliographicCitationHanifzadeh, M.; Sarrafzadeh, M.-H.; Nabati, Z.; Tavakoli, O.; Feyzizarnagh, H. Technical, Economic and Energy Assessment of an Alternative Strategy for Mass Production of Biomass and Lipid from Microalgae. J. Environ. Chem. Eng. 2018, 6, 866−873.spa
dcterms.bibliographicCitationNautiyal, P.; Subramanian, K. A.; Dastidar, M. G. Experimental Investigation on Adsorption Properties of Biochar Derived from Algae Biomass Residue of Biodiesel Production. Environ. Process. 2017, 4, 179−193.spa
dcterms.bibliographicCitationSutherland, D. L.; Ralph, P. J. Microalgal Bioremediation of Emerging Contaminants - Opportunities and Challenges. Water Res. 2019, 164, No. 114921.spa
dcterms.bibliographicCitationHena, S.; Gutierrez, L.; Croué, J. P. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Wastewater Using Microalgae: A Review. J. Hazard. Mater. 2021, 403, No. 124041.spa
dcterms.bibliographicCitationAngulo, E.; Bula, L.; Mercado, I.; Montaño, A.; Cubillán, N. Bioremediation of Cephalexin with Non-Living Chlorella Sp., Biomass after Lipid Extraction. Bioresour. Technol. 2018, 257, 17−22.spa
dcterms.bibliographicCitationDaneshvar, E.; Zarrinmehr, M. J.; Hashtjin, A. M.; Farhadian, O.; Bhatnagar, A. Versatile Applications of Freshwater and Marine Water Microalgae in Dairy Wastewater Treatment, Lipid Extraction and Tetracycline Biosorption. Bioresour. Technol. 2018, 268, 523− 530.spa
dcterms.bibliographicCitationSaldaña, K.; Angulo, E.; Mercado, I.; Castellar, G.; Cubillán, N. Removal of Minocycline from High Concentrated Aqueous Medium by Nonliving and Lipid-Free Chlorella Sp. Biomass. Bioresour. Technol. Rep. 2022, 17, No. 100921.spa
dcterms.bibliographicCitationHosseinizand, H.; Sokhansanj, S.; Lim, C. J. Studying the Drying Mechanism of Microalgae Chlorella Vulgaris and the Optimum Drying Temperature to Preserve Quality Characteristics. Dry. Technol. 2018, 36, 1049−1060.spa
dcterms.bibliographicCitationBligh, E. G.; Dyer, W. J. A Rapid Method Of Total Lipid Extraction And Purification. Can. J. Biochem. Physiol. 1959, 37, 911− 917.spa
dcterms.bibliographicCitationGuo, X.; Su, G.; Li, Z.; Chang, J.; Zeng, X.; Sun, Y.; Lu, Y.; Lin, L. Light Intensity and N/P Nutrient Affect the Accumulation of Lipid and Unsaturated Fatty Acids by Chlorella Sp. Bioresour. Technol. 2015, 191, 385−390.spa
dcterms.bibliographicCitationD’Oca, M. G. M.; Viêgas, C.; Lemões, J.; Miyasaki, E.; Morón- Villarreyes, J.; Primel, E.; Abreu, P. Production of FAMEs from Several Microalgal Lipidic Extracts and Direct Transesterification of the Chlorella Pyrenoidosa. Biomass Bioenergy 2011, 35, 1533−1538.spa
dcterms.bibliographicCitationWheeler, R. AlgDesign. The R Foundation for statistical computing 2004.spa
dcterms.bibliographicCitationR Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018.spa
dcterms.bibliographicCitationMcKay, G.; Otterburn, M. S.; Sweeney, A. G. The Removal of Colour from Effluent Using Various Adsorbents-III. Silica: Rate Processes. Water Res. 1980, 14, 15−20.spa
dcterms.bibliographicCitationScrucca, L. On Some Extensions to GA Package: Hybrid Optimisation, Parallelisation and Islands Evolution. R J. 2017, 9, 187.spa
dcterms.bibliographicCitationJin, L.; Amaya-Mazo, X.; Apel, M. E.; Sankisa, S. S.; Johnson, E.; Zbyszynska, M. A.; Han, A. Ca2+ and Mg2+ Bind Tetracycline with Distinct Stoichiometries and Linked Deprotonation. Biophys. Chem. 2007, 128, 185−196.spa
dcterms.bibliographicCitationFrisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09 Revision A.2; Wallingford, 2009.spa
dcterms.bibliographicCitationLi, W. C.; Wong, M. H. A Comparative Study on Tetracycline Sorption by Pachydictyon Coriaceum and Sargassum Hemiphyllum. Int. J. Environ. Sci. Technol. 2015, 12, 2731−2740.spa
dcterms.bibliographicCitationDing, Y. Y.; Cui, H.; Chen, J. Biosorption of Tetracycline onto Dried Alligator Weed Root: Effect of Solution Chemistry and Role of Metal (Hydr)Oxides. Res. Chem. Intermed. 2017, 43, 1121−1138.spa
dcterms.bibliographicCitationMartins, A. C.; Pezoti, O.; Cazetta, A. L.; Bedin, K. C.; Yamazaki, D. A. S. S.; Bandoch, G. F. G. G.; Asefa, T.; Visentainer, J. V.; Almeida, V. C. Removal of Tetracycline by NaOH-Activated Carbon Produced from Macadamia Nut Shells: Kinetic and Equilibrium Studies. Chem. Eng. J. 2015, 260, 291−299.spa
dcterms.bibliographicCitationPeng, L.; Ren, Y.; Gu, J.; Qin, P.; Zeng, Q.; Shao, J.; Lei, M.; Chai, L. Iron Improving Bio-Char Derived from Microalgae on Removal of Tetracycline from Aqueous System. Environ. Sci. Pollut. Res. 2014, 21, 7631−7640.spa
dcterms.bibliographicCitationGao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.; Su, X. Adsorption and Removal of Tetracycline Antibiotics from Aqueous Solution by Graphene Oxide. J. Colloid Interface Sci. 2012, 368, 540− 546.spa
dcterms.bibliographicCitationWang, Y. U. J.; Jia, D. E. A. N.; Sun, R. J.; Zhu, H. W.; Zhou, D. M. Adsorption and Cosorption of Tetracycline and Copper (Ll) on Montmorillonite as Affected by Solution PH. Environ. Sci. Technol. 2008, 42, 3254−3259.spa
dcterms.bibliographicCitationChang, P. H.; Li, Z.; Jean, J. S.; Jiang, W. T.; Wang, C. J.; Lin, K. H. Adsorption of Tetracycline on 2:1 Layered Non-Swelling Clay Mineral Illite. Appl. Clay Sci. 2012, 67-68, 158−163.spa
dcterms.bibliographicCitationYang, X.; Xu, G.; Yu, H.; Zhang, Z. Preparation of Ferric- Activated Sludge-Based Adsorbent from Biological Sludge for Tetracycline Removal. Bioresour. Technol. 2016, 211, 566−573.spa
dcterms.bibliographicCitationLargitte, L.; Pasquier, R. A Review of the Kinetics Adsorption Models and Their Application to the Adsorption of Lead by an Activated Carbon. Chem. Eng. Res. Des. 2016, 109, 495−504.spa
dcterms.bibliographicCitationJang, H. M.; Yoo, S.; Choi, Y.-K.; Park, S.; Kan, E. Adsorption Isotherm, Kinetic Modeling and Mechanism of Tetracycline on Pinus Taeda-Derived Activated Biochar. Bioresour. Technol. 2018, 259, 24− 31.spa
dcterms.bibliographicCitationPan, L.; Cao, Y.; Zang, J.; Huang, Q.; Wang, L.; Zhang, Y.; Fan, S.; Tang, J.; Xie, Z. Preparation of Iron-Loaded Granular Activated Carbon Catalyst and Its Application in Tetracycline Antibiotic Removal from Aqueous Solution. Int. J. Environ. Res. Public Health 2019, 16, 2270.spa
dcterms.bibliographicCitationSaadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N. E. Monolayer and Multilayer Adsorption Isotherm Models for Sorption from Aqueous Media. Korean J. Chem. Eng. 2015, 32, 787−799.spa
dcterms.bibliographicCitationEbadi, A.; Soltan Mohammadzadeh, J. S.; Khudiev, A. What Is the Correct Form of BET Isotherm for Modeling Liquid Phase Adsorption? Adsorption 2009, 15, 65−73.spa
dcterms.bibliographicCitationDalm, D.; Palm, G. J.; Aleksandrov, A.; Simonson, T.; Hinrichs, W. Nonantibiotic Properties of Tetracyclines: Structural Basis for Inhibition of Secretory Phospholipase A2. J. Mol. Biol. 2010, 398, 83− 96.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1021/acsomega.2c00696
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85129044197&doi=10.1021%2facsomega.2c00696&partnerID=40&md5=f9e1eab9dbedbe0591ee180555ff0302
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Industrialspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por