Mostrar el registro sencillo del ítem
Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass
dc.contributor.author | Suárez Martínez, Dayra | |
dc.contributor.other | Angulo Mercado, Edgardo | |
dc.contributor.other | Mercado Martínez, Ivan | |
dc.contributor.other | Vacca Jimeno, Victor | |
dc.contributor.other | Tapia Larios, Claudia | |
dc.contributor.other | Cubillán, Néstor | |
dc.date.accessioned | 2022-11-15T19:37:33Z | |
dc.date.available | 2022-11-15T19:37:33Z | |
dc.date.issued | 2022-04-14 | |
dc.date.submitted | 2022-02-03 | |
dc.identifier.citation | Suárez-Martínez D, Angulo-Mercado E, Mercado-Martínez I, Vacca-Jimeno V, Tapia-Larios C, Cubillán N. Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass. ACS Omega. 2022 Apr 14;7(16):14128-14137. doi: 10.1021/acsomega.2c00696 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/828 | |
dc.description.abstract | Microalgae are used as a lipid source for different applications, such as cosmetics and biofuel. The nonliving biomass and the byproduct from the lipid extraction procedure can efficiently remove antibiotics. This work has explored the potential use of Chlorella sp. biomasses for tetracycline (Tc) removal from highly concentrated aqueous media. Non-living biomass (NLB) is the biomass before the lipid extraction procedure, while lipid-extracted biomass (LEB) is the byproduct mentioned before. LEB removed 76.9% of Tc at 40 mg/L initial concentration and 40 mg of biomass, representing an adsorption capacity of 19.2 mg/g. Subsequently, NLB removed 68.0% of Tc at 50 mg/L and 60 mg of biomass, equivalent to 14.2 mg/g of adsorptive capacity. These results revealed an enhanced removal capacity by LEB compared with NLB and other microalgae-based materials. On the other hand, the adsorption kinetics followed the pseudo-second-order and Elovich models, suggesting chemisorption with interactions between adsorbates. The adsorption isotherms indicate a multilayer mechanism on a heterogeneous surface. Additionally, the interactions between the surface and the first layer of tetracycline are weak, and the formation of the subsequent layers is favored. The Chlorella sp. biomass after the lipid extraction process is a promising material for removing tetracycline; moreover, the use of this residue contributes to the zero-waste strategy. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | ACS Omega | spa |
dc.title | Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass | spa |
dcterms.bibliographicCitation | Grossman, T. H. Tetracycline Antibiotics and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, No. a025387. | spa |
dcterms.bibliographicCitation | Carvalho, I. T.; Santos, L. Antibiotics in the Aquatic Environments: A Review of the European Scenario. Environ. Int | spa |
dcterms.bibliographicCitation | Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. J. Anal. Methods Chem. 2017, 2017, No. 1315497. | spa |
dcterms.bibliographicCitation | Ziółkowski, H.; Jasiecka-Mikołajczyk, A.; Madej-Śmiechowska, H.; Janiuk, J.; Zygmuntowicz, A.; Dąbrowski, M. Comparative Pharmacokinetics of Chlortetracycline, Tetracycline, Minocycline and Tigecycline in Broiler Chickens. Poult. Sci. 2020, 99, 4750−4757. | spa |
dcterms.bibliographicCitation | Michael, C. A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Front. Public Health 2014, 2, 145. | spa |
dcterms.bibliographicCitation | Javid, A.; Mesdaghinia, A.; Nasseri, S.; Mahvi, A. H.; Alimohammadi, M.; Gharibi, H. Assessment of Tetracycline Contamination in Surface and Groundwater Resources Proximal to Animal Farming Houses in Tehran, Iran. J. Environ. Health Sci. Eng. 2016, 14, 4. | spa |
dcterms.bibliographicCitation | Wang, Z.; Chen, Q.; Zhang, J.; Dong, J.; Yan, H.; Chen, C.; Feng, R. Characterization and Source Identification of Tetracycline Antibiotics in the Drinking Water Sources of the Lower Yangtze River. J. Environ. Manage. 2019, 244, 13−22. | spa |
dcterms.bibliographicCitation | Kim, Y. B.; Seo, K. W.; Jeon, H. Y.; Lim, S. K.; Sung, H. W.; Lee, Y. J. Molecular Characterization of Erythromycin and Tetracycline- Resistant Enterococcus Faecalis Isolated from Retail Chicken Meats. Poult. Sci. 2019, 98, 977−983. | spa |
dcterms.bibliographicCitation | Pena, A.; Paulo, M.; Silva, L. J. G.; Seifrtová, M.; Lino, C. M.; Solich, P. Tetracycline Antibiotics in Hospital and Municipal Wastewaters: A Pilot Study in Portugal. Anal. Bioanal. Chem. 2010, 396, 2929−2936. | spa |
dcterms.bibliographicCitation | Yi, Q.; Gao, Y.; Zhang, H.; Zhang, H.; Zhang, Y.; Yang, M. Establishment of a Pretreatment Method for Tetracycline Production Wastewater Using Enhanced Hydrolysis. Chem. Eng. J. 2016, 300, 139−145. | spa |
dcterms.bibliographicCitation | Liu, H.; Xu, G.; Li, G. Preparation of Porous Biochar Based on Pharmaceutical Sludge Activated by NaOH and Its Application in the Adsorption of Tetracycline. J. Colloid Interface Sci. 2021, 587, 271− 278. | spa |
dcterms.bibliographicCitation | Daghrir, R.; Drogui, P. Tetracycline Antibiotics in the Environment: A Review. Environ. Chem. Lett. 2013, 11, 209−227. | spa |
dcterms.bibliographicCitation | Zhang, N.; Chen, J.; Fang, Z.; Tsang, E. P. Ceria Accelerated Nanoscale Zerovalent Iron Assisted Heterogenous Fenton Oxidation of Tetracycline. Chem. Eng. J. 2019, 369, 588−599. | spa |
dcterms.bibliographicCitation | Zhang, S.; Song, H.; Yang, X.; Yang, K.; Wang, X. Effect of Electrical Stimulation on the Fate of Sulfamethoxazole and Tetracycline with Their Corresponding Resistance Genes in Three- Dimensional Biofilm-Electrode Reactors. Chemosphere 2016, 164, 113−119. | spa |
dcterms.bibliographicCitation | Lin, Y.; Xu, S.; Li, J. Fast and Highly Efficient Tetracyclines Removal from Environmental Waters by Graphene Oxide Functionalized Magnetic Particles. Chem. Eng. J. 2013, 225, 679−685. | spa |
dcterms.bibliographicCitation | Zhang, L.; Song, X.; Liu, X.; Yang, L.; Pan, F.; Lv, J. Studies on the Removal of Tetracycline by Multi-Walled Carbon Nanotubes. Chem. Eng. J. 2011, 178, 26−33. | spa |
dcterms.bibliographicCitation | Bernaerts, T. M. M.; Gheysen, L.; Kyomugasho, C.; Jamsazzadeh Kermani, Z.; Vandionant, S.; Foubert, I.; Hendrickx, M. E.; Van Loey, A. M. Comparison of Microalgal Biomasses as Functional Food Ingredients: Focus on the Composition of Cell Wall Related Polysaccharides. Algal Res. 2018, 32, 150−161. | spa |
dcterms.bibliographicCitation | Menegazzo, M. L.; Fonseca, G. G. Biomass Recovery and Lipid Extraction Processes for Microalgae Biofuels Production: A Review. Renew. Sustain. Energy Rev. 2019, 107, 87−107. | spa |
dcterms.bibliographicCitation | De Luca, M.; Pappalardo, I.; Limongi, A. R.; Viviano, E.; Radice, R. P.; Todisco, S.; Martelli, G.; Infantino, V.; Vassallo, A. Lipids from Microalgae for Cosmetic Applications. Cosmetics 2021, 8, 52. | spa |
dcterms.bibliographicCitation | osta, J. A. V.; Freitas, B. C. B.; Moraes, L.; Zaparoli, M.; Morais, M. G. Progress in the Physicochemical Treatment of Microalgae Biomass for Value-Added Product Recovery. Bioresour. Technol. 2020, 301, No. 122727. | spa |
dcterms.bibliographicCitation | Ye, C.; Mu, D.; Horowitz, N.; Xue, Z.; Chen, J.; Xue, M.; Zhou, Y.; Klutts, M.; Zhou, W. Life Cycle Assessment of Industrial Scale Production of Spirulina Tablets. Algal Res. 2018, 34, 154−163. | spa |
dcterms.bibliographicCitation | Hanifzadeh, M.; Sarrafzadeh, M.-H.; Nabati, Z.; Tavakoli, O.; Feyzizarnagh, H. Technical, Economic and Energy Assessment of an Alternative Strategy for Mass Production of Biomass and Lipid from Microalgae. J. Environ. Chem. Eng. 2018, 6, 866−873. | spa |
dcterms.bibliographicCitation | Nautiyal, P.; Subramanian, K. A.; Dastidar, M. G. Experimental Investigation on Adsorption Properties of Biochar Derived from Algae Biomass Residue of Biodiesel Production. Environ. Process. 2017, 4, 179−193. | spa |
dcterms.bibliographicCitation | Sutherland, D. L.; Ralph, P. J. Microalgal Bioremediation of Emerging Contaminants - Opportunities and Challenges. Water Res. 2019, 164, No. 114921. | spa |
dcterms.bibliographicCitation | Hena, S.; Gutierrez, L.; Croué, J. P. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Wastewater Using Microalgae: A Review. J. Hazard. Mater. 2021, 403, No. 124041. | spa |
dcterms.bibliographicCitation | Angulo, E.; Bula, L.; Mercado, I.; Montaño, A.; Cubillán, N. Bioremediation of Cephalexin with Non-Living Chlorella Sp., Biomass after Lipid Extraction. Bioresour. Technol. 2018, 257, 17−22. | spa |
dcterms.bibliographicCitation | Daneshvar, E.; Zarrinmehr, M. J.; Hashtjin, A. M.; Farhadian, O.; Bhatnagar, A. Versatile Applications of Freshwater and Marine Water Microalgae in Dairy Wastewater Treatment, Lipid Extraction and Tetracycline Biosorption. Bioresour. Technol. 2018, 268, 523− 530. | spa |
dcterms.bibliographicCitation | Saldaña, K.; Angulo, E.; Mercado, I.; Castellar, G.; Cubillán, N. Removal of Minocycline from High Concentrated Aqueous Medium by Nonliving and Lipid-Free Chlorella Sp. Biomass. Bioresour. Technol. Rep. 2022, 17, No. 100921. | spa |
dcterms.bibliographicCitation | Hosseinizand, H.; Sokhansanj, S.; Lim, C. J. Studying the Drying Mechanism of Microalgae Chlorella Vulgaris and the Optimum Drying Temperature to Preserve Quality Characteristics. Dry. Technol. 2018, 36, 1049−1060. | spa |
dcterms.bibliographicCitation | Bligh, E. G.; Dyer, W. J. A Rapid Method Of Total Lipid Extraction And Purification. Can. J. Biochem. Physiol. 1959, 37, 911− 917. | spa |
dcterms.bibliographicCitation | Guo, X.; Su, G.; Li, Z.; Chang, J.; Zeng, X.; Sun, Y.; Lu, Y.; Lin, L. Light Intensity and N/P Nutrient Affect the Accumulation of Lipid and Unsaturated Fatty Acids by Chlorella Sp. Bioresour. Technol. 2015, 191, 385−390. | spa |
dcterms.bibliographicCitation | D’Oca, M. G. M.; Viêgas, C.; Lemões, J.; Miyasaki, E.; Morón- Villarreyes, J.; Primel, E.; Abreu, P. Production of FAMEs from Several Microalgal Lipidic Extracts and Direct Transesterification of the Chlorella Pyrenoidosa. Biomass Bioenergy 2011, 35, 1533−1538. | spa |
dcterms.bibliographicCitation | Wheeler, R. AlgDesign. The R Foundation for statistical computing 2004. | spa |
dcterms.bibliographicCitation | R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. | spa |
dcterms.bibliographicCitation | McKay, G.; Otterburn, M. S.; Sweeney, A. G. The Removal of Colour from Effluent Using Various Adsorbents-III. Silica: Rate Processes. Water Res. 1980, 14, 15−20. | spa |
dcterms.bibliographicCitation | Scrucca, L. On Some Extensions to GA Package: Hybrid Optimisation, Parallelisation and Islands Evolution. R J. 2017, 9, 187. | spa |
dcterms.bibliographicCitation | Jin, L.; Amaya-Mazo, X.; Apel, M. E.; Sankisa, S. S.; Johnson, E.; Zbyszynska, M. A.; Han, A. Ca2+ and Mg2+ Bind Tetracycline with Distinct Stoichiometries and Linked Deprotonation. Biophys. Chem. 2007, 128, 185−196. | spa |
dcterms.bibliographicCitation | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09 Revision A.2; Wallingford, 2009. | spa |
dcterms.bibliographicCitation | Li, W. C.; Wong, M. H. A Comparative Study on Tetracycline Sorption by Pachydictyon Coriaceum and Sargassum Hemiphyllum. Int. J. Environ. Sci. Technol. 2015, 12, 2731−2740. | spa |
dcterms.bibliographicCitation | Ding, Y. Y.; Cui, H.; Chen, J. Biosorption of Tetracycline onto Dried Alligator Weed Root: Effect of Solution Chemistry and Role of Metal (Hydr)Oxides. Res. Chem. Intermed. 2017, 43, 1121−1138. | spa |
dcterms.bibliographicCitation | Martins, A. C.; Pezoti, O.; Cazetta, A. L.; Bedin, K. C.; Yamazaki, D. A. S. S.; Bandoch, G. F. G. G.; Asefa, T.; Visentainer, J. V.; Almeida, V. C. Removal of Tetracycline by NaOH-Activated Carbon Produced from Macadamia Nut Shells: Kinetic and Equilibrium Studies. Chem. Eng. J. 2015, 260, 291−299. | spa |
dcterms.bibliographicCitation | Peng, L.; Ren, Y.; Gu, J.; Qin, P.; Zeng, Q.; Shao, J.; Lei, M.; Chai, L. Iron Improving Bio-Char Derived from Microalgae on Removal of Tetracycline from Aqueous System. Environ. Sci. Pollut. Res. 2014, 21, 7631−7640. | spa |
dcterms.bibliographicCitation | Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.; Su, X. Adsorption and Removal of Tetracycline Antibiotics from Aqueous Solution by Graphene Oxide. J. Colloid Interface Sci. 2012, 368, 540− 546. | spa |
dcterms.bibliographicCitation | Wang, Y. U. J.; Jia, D. E. A. N.; Sun, R. J.; Zhu, H. W.; Zhou, D. M. Adsorption and Cosorption of Tetracycline and Copper (Ll) on Montmorillonite as Affected by Solution PH. Environ. Sci. Technol. 2008, 42, 3254−3259. | spa |
dcterms.bibliographicCitation | Chang, P. H.; Li, Z.; Jean, J. S.; Jiang, W. T.; Wang, C. J.; Lin, K. H. Adsorption of Tetracycline on 2:1 Layered Non-Swelling Clay Mineral Illite. Appl. Clay Sci. 2012, 67-68, 158−163. | spa |
dcterms.bibliographicCitation | Yang, X.; Xu, G.; Yu, H.; Zhang, Z. Preparation of Ferric- Activated Sludge-Based Adsorbent from Biological Sludge for Tetracycline Removal. Bioresour. Technol. 2016, 211, 566−573. | spa |
dcterms.bibliographicCitation | Largitte, L.; Pasquier, R. A Review of the Kinetics Adsorption Models and Their Application to the Adsorption of Lead by an Activated Carbon. Chem. Eng. Res. Des. 2016, 109, 495−504. | spa |
dcterms.bibliographicCitation | Jang, H. M.; Yoo, S.; Choi, Y.-K.; Park, S.; Kan, E. Adsorption Isotherm, Kinetic Modeling and Mechanism of Tetracycline on Pinus Taeda-Derived Activated Biochar. Bioresour. Technol. 2018, 259, 24− 31. | spa |
dcterms.bibliographicCitation | Pan, L.; Cao, Y.; Zang, J.; Huang, Q.; Wang, L.; Zhang, Y.; Fan, S.; Tang, J.; Xie, Z. Preparation of Iron-Loaded Granular Activated Carbon Catalyst and Its Application in Tetracycline Antibiotic Removal from Aqueous Solution. Int. J. Environ. Res. Public Health 2019, 16, 2270. | spa |
dcterms.bibliographicCitation | Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N. E. Monolayer and Multilayer Adsorption Isotherm Models for Sorption from Aqueous Media. Korean J. Chem. Eng. 2015, 32, 787−799. | spa |
dcterms.bibliographicCitation | Ebadi, A.; Soltan Mohammadzadeh, J. S.; Khudiev, A. What Is the Correct Form of BET Isotherm for Modeling Liquid Phase Adsorption? Adsorption 2009, 15, 65−73. | spa |
dcterms.bibliographicCitation | Dalm, D.; Palm, G. J.; Aleksandrov, A.; Simonson, T.; Hinrichs, W. Nonantibiotic Properties of Tetracyclines: Structural Basis for Inhibition of Secretory Phospholipase A2. J. Mol. Biol. 2010, 398, 83− 96. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1021/acsomega.2c00696 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.identifier.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129044197&doi=10.1021%2facsomega.2c00696&partnerID=40&md5=f9e1eab9dbedbe0591ee180555ff0302 | |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Industrial | spa |
dc.publisher.sede | Sede Norte | spa |