Mostrar el registro sencillo del ítem

dc.contributor.authorPeñas Galezo, Ramiro
dc.date.accessioned2022-11-15T19:36:35Z
dc.date.available2022-11-15T19:36:35Z
dc.date.issued2021-07-16
dc.date.submitted2021-01-05
dc.identifier.urihttps://hdl.handle.net/20.500.12834/825
dc.description.abstractThis paper presents the weak formulation of a quasi-static evolution model for two deformable bodies with unidirectional adhesive unilateral contact on which external loads act. Small deformations and linearized elastoplasticity with hardening are assumed. The adhesion component is rate-dependent or rate-independent according to the choice of the viscosity coefficient of the glue; elastoplasticity is considered rate-independent. The weak formulation is expressed as a doubly non-linear problem with unbounded multivalued operators, as a function of internal and boundary displacements, plastic and symmetric strain tensors, and the bonding field and its gradient. This paper differs from other formulations by coupling the equations defined inside and on the boundary of the solids in functional form. In addition to this novelty, we verify the existence of solutions by a path other than that displayed in similar articles. The existence of solutions is demonstrated after considering a succession of doubly non-linear problems with an unbounded operator, and verifying that the solution of one of the problems is also a solution to the objective problem. The proof is supported by previous results from non-linear Partial differential equations theory with monotone operators.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceAdvances in Mechanical Engineeringspa
dc.titleFormulation and existence of weak solutions for a problem of adhesive contact with elastoplasticity and hardeningspa
dcterms.bibliographicCitation1. Roubı´cˇek T, Manticˇ V and Panagiotopoulos CG. A quasistatic mixed-mode delamination model. Discrete Contin Dyn Syst 2013; 6: 591–610.spa
dcterms.bibliographicCitation2. Kocˇvara M, Mielke A and Roubı´cˇek T. A rateindependent approach to the delamination problem. Math Mech Solids 2006; 11: 423–447spa
dcterms.bibliographicCitation3. Roubı´cˇek T, Scardia L and Zanini C. Quasistatic delamination problem. Continuum Mech Thermodyn 2009; 21: 223–235spa
dcterms.bibliographicCitation4. Bonetti E, Rocca E, Rossi R, et al. A rate-independent gradient system in damage coupled with plasticity via structured strains. ESAIM Proc Surv 2016; 54: 54–69.spa
dcterms.bibliographicCitation5. Rossi R and Roubı´cˇek T. Thermodynamics and analysis of rate-independent adhesive contact at small strains. Nonlinear Anal Theory Methods Appl 2011; 74: 3159–3190spa
dcterms.bibliographicCitation6. Panagiotopoulos CG, Manticˇ V and Roubı´cˇek T. Two adhesive-contact models for quasistatic mixed-mode delamination problems. Math Comput Simul 2018; 145: 18–33spa
dcterms.bibliographicCitation7. Fremond M. Contact with adhesion. In: Italiana UM (ed.) Phase change in mechanics. Berlin: Springer-Verlag, 2012, pp.109–113.spa
dcterms.bibliographicCitation8. Han W and Sofonea M. Quasistatic contact problem in viscoelasticity and viscoplasticity. Providence, RI: American Mathematical Society, 2002spa
dcterms.bibliographicCitation9. Chau O, Ferna´ndez JR, Shillor M, et al. Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion. J Comput Appl Math 2003; 159: 431–465spa
dcterms.bibliographicCitation10. Bonetti E, Bonfanti G and Rossi R. Global existence for a contact problem with adhesion. Math Methods Appl Sci 2008; 31: 1029–1064.spa
dcterms.bibliographicCitation11. Colli P and Visintin A. On a class of doubly nonlinear evolution equations. Commun Partial Differ Equ 1990; 15: 737–756.spa
dcterms.bibliographicCitation12. Colli P. On some doubly nonlinear evolution equations in Banach spaces. Jpn J Ind Appl Math 1992; 9: 181–203.spa
dcterms.bibliographicCitation13. Akagi G. Doubly nonlinear evolution equations governed by time-dependent subdifferentials in reflexive Banach spaces. J Differ Equ 2006; 231: 32–56spa
dcterms.bibliographicCitation14. Barbu V. Nonlinear differential equations of monotone types in Banach spaces. Springer Monographs in Mathematics. New York, NY: Springer, 2010.spa
dcterms.bibliographicCitation15. Stefanelli U. A variational principle for hardening elastoplasticity. SIAM J Math Anal 2008; 40: 623–652.spa
dcterms.bibliographicCitation16. Liero M and Mielke A. An evolutionary elastoplastic plate model derived via G-convergence. Math Model Methods Appl Sci 2011; 21: 1961–1986.spa
dcterms.bibliographicCitation17. Mielke A. Chapter 6. Evolution of rate-independent systems. In: Dafermos CM and Feireisl E (eds) Handbook of differential equations: evolutionary equations, vol. 2. Amsterdam: Elsevier/North Holland, 2005, pp.461–559.spa
dcterms.bibliographicCitation18. Wang L. On Korn’s inequality. J Comput Math 2003; 31: 321–324.spa
dcterms.bibliographicCitation19. Heitbreder T, Ottosen NS, Ristinmaa M, et al. Consistent elastoplastic cohesive zone model at finite deformations – variational formulation. Int J Solids Struct 2017; 106–107: 284–293spa
dcterms.bibliographicCitation20. Xu H and Komvopoulos K. Surface adhesion and hardening effects on elastic–plastic deformation, shakedown and ratcheting behavior of half-spaces subjected to repeated sliding contact. Int J Solids Struct 2013; 50: 876–886.spa
dcterms.bibliographicCitation21. Roubı´cˇek T. Nonlinear partial differential equations with applications. Basel: Birkha¨user Verlag, 2005, 321–356 p.spa
dcterms.bibliographicCitation22. Temam R. Mathematical problems in plasticity. Paris: Gauthier-Villars, 1985, 1–99 pspa
dcterms.bibliographicCitation23. Adams RA and Fournier JJF. Sobolev spaces. Vol. 140. 2nd ed. Amsterdam: Academic Pres, 2003spa
dcterms.bibliographicCitation24. Brezis H. Functional analysis, Sobolev spaces and partial differential equations. New York, NY: Springer-Verlag, 2011spa
dcterms.bibliographicCitation25. Krabbenhøft K. A variational principle of elastoplasticity and its application to the modeling of frictional materials. Int J Solids Struct 2009; 46: 464–479spa
dcterms.bibliographicCitation26. Evans L. Partial differential equations. 2nd ed. Providence, RI: American Mathematical Society, 1998, 662 pspa
dcterms.bibliographicCitation27. Showalter RE. Monotone operators in Banach space and nonlinear partial differential equations. Math Surv Monogr 1997; 49: 282.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1177/16878140211039138
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsContact, delamination, unilateral, unidirectional, doubly non-linear problem, strongly monotone operatorspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineMatemáticasspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por