Mostrar el registro sencillo del ítem

dc.contributor.authorObregon-Quiñones, Luis Guillermo
dc.contributor.otherAristizábal-González, Cristian Alexis
dc.contributor.otherCaro-Candenazo, Miguel Antonio
dc.date.accessioned2022-11-15T19:35:52Z
dc.date.available2022-11-15T19:35:52Z
dc.date.issued2021-06-25
dc.date.submitted2021-03-15
dc.identifier.urihttps://hdl.handle.net/20.500.12834/824
dc.description.abstractIn the present work, a Matlab® computer code for cooling tower simulation was developed to perform a parametric analysis that determines the effect of the column cross-sectional area on multiple operating variables such as air humidity, air and water outlet temperature, among others. The computer code uses the Merkel's model and the CDAWC (Continuous Differential Air-Water Contactor) model for later comparison. It was observed a decrease in the outlet water temperature by approximately 14% when the tower's cross-sectional area increased from 1 to 2 m2. It increases the air outlet temperature by about 17% due to increased air-water contact. A negative convective heat transfer in the air was obtained in the cooling tower´s bottom due to the large amount of energy required for the heat transfer by vaporization, which was much larger than the convective heat. The evaporative heat transfer is over 80% of the total heat transferred.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceJournal of Engineering Science and Technology Reviewspa
dc.titleParametric Analysis of a Mechanical Draft Cooling Tower using Two Mathematical Modelsspa
dcterms.bibliographicCitation1. M. Llano-Restrepo and R. Monsalve-Reyes, "Modeling and simulation of counterflow wet-cooling towers and the accurate calculation and correlation of mass transfer coefficients for thermal performance prediction," International Journal of Refrigeration, vol. 74, pp. 47-72, 2017.spa
dcterms.bibliographicCitation2. R. F. F. Pontes, W. M. Yamauchi, and E. K. G. Silva, "Analysis of the effect of seasonal climate changes on cooling tower efficiency, and strategies for reducing cooling tower power consumption," Applied Thermal Engineering, vol. 161, pp. 114148, 2019.spa
dcterms.bibliographicCitation3. W. M. S. a. T. K. Sherwood, "Performance of small mechanical draft cooling towers," Am Soc Refrig Eng vol. 52, p. 9, 1946.spa
dcterms.bibliographicCitation4. H. J. Feise and E. Schaer, "Mastering digitized chemical engineering," Education for Chemical Engineers, vol. 34, pp. 78-86, 2021spa
dcterms.bibliographicCitation5. M. Arif, M. N. khan, and M. Parvez, "Universal Engineering Model for Cooling Towers," International Journal of Engineering Research and Applications, vol. 5, pp. 2248-9622, 2015spa
dcterms.bibliographicCitation6. H. Ma, F. Si, K. Zhu, and J. Wang, "Quantitative research of spray cooling effects on thermo-flow performance of the large-scale dry cooling tower with an integrated numerical model," International Journal of Heat and Mass Transfer, vol. 141, pp. 799-817, 2019.spa
dcterms.bibliographicCitation7. Y. Zhang, H. Zhang, Y. Wang, S. You, and W. Zheng, "Optimal configuration and operating condition of counter flow cooling towers using particle swarm optimization algorithm," Applied Thermal Engineering, vol. 151, pp. 318-327, 2019.spa
dcterms.bibliographicCitation8. O. M. Hernández-Calderón, E. Rubio-Castro, and E. Y. Rios-Iribe, "Solving the heat and mass transfer equations for an evaporative cooling tower through an orthogonal collocation method," Computers & Chemical Engineering, vol. 71, pp. 24-38, 2014spa
dcterms.bibliographicCitation9. L. F. Arrieta, L. G. Obregon, and G. E. Valencia, "A Matlab-Based Program for the Design And Simulation of Wet Cooling Towers," Chemical Engineering Transactions, vol. 57, pp. 1585-1590, 2017spa
dcterms.bibliographicCitation10. J. C. Kloppers and D. G. Kroger, "Loss coefficient correlation for wet-cooling tower fills," Applied Thermal Engineering, vol. 23, pp. 2201-2211, 2003.spa
dcterms.bibliographicCitation11. G. Zengin and A. Onat, "Experimental and theoretical analysis of mechanical draft counterflow wet cooling towers," Science and Technology for the Built Environment, vol. 27, pp. 14-27, 2021spa
dcterms.bibliographicCitation12. J. A. Queiroz, V. M. S. Rodrigues, H. A. Matos, and F. G. Martins, "Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method," Energy Conversion and Management, vol. 64, pp. 473-481, 2012.spa
dcterms.bibliographicCitation13. N. Blain, A. Belaud, and M. Miolane, "Development and validation of a CFD model for numerical simulation of a large natural draft wet cooling tower," Applied Thermal Engineering, vol. 105, pp. 953-960, 2016.spa
dcterms.bibliographicCitation14. Y. Dementiev, L. Burulko, and E. Suvorkova, "Pedagogical Aspects of Applied Software Packages and Computer Technologies Use in Student's Education," Procedia - Social and Behavioral Sciences, vol. 206, pp. 289-294, 2015spa
dcterms.bibliographicCitation15. J. C. Kloppers and D. G. Kroger, "Cooling Tower Performance Evaluation: Merkel, Poppe, and e-NTU Methods of Analysis," Journal of Engineering for Gas Turbines and Power, vol. 127, pp. 1- 7, 2005spa
dcterms.bibliographicCitation16. X. Meng, W. Hu, J. Zhou, Y. Cao, Y. Gao, and L. Zhang, "Parametric analysis on the temperature response rules in inner surfaces for the homogeneity walls," Case Studies in Thermal Engineering, vol. 13, p. 100353, 2019spa
dcterms.bibliographicCitation17. A. Laknizi, M. Mahdaoui, A. Ben Abdellah, K. Anoune, M. Bakhouya, and H. Ezbakhe, "Performance analysis and optimal parameters of a direct evaporative pad cooling system under the climate conditions of Morocco," Case Studies in Thermal Engineering, vol. 13, p. 100362, 2019.spa
dcterms.bibliographicCitation18. Y. Al Horr, B. Tashtoush, N. Chilengwe, and M. Musthafa, "Operational mode optimization of indirect evaporative cooling in hot climates," Case Studies in Thermal Engineering, vol. 18, p. 100574, 2020.spa
dcterms.bibliographicCitation19. N. M. Phu and N. V. Hap, "Influence of inlet water temperature on heat transfer and pressure drop of dehumidifying air coil using analytical and experimental methods," Case Studies in Thermal Engineering, vol. 18, p. 100581, 2020.spa
dcterms.bibliographicCitation20. J. G. Acevedo, G. Valencia Ochoa, and L. G. Obregon, "Development of a new educational package based on e-learning to study engineering thermodynamics process: combustion, energy and entropy analysis," Heliyon, vol. 6, p. e04269, 2020spa
dcterms.bibliographicCitation21. M. R. D. Biasi, G. E. Valencia, and L. G. Obregon, "A New Educational Thermodynamic Software to Promote Critical Thinking in Youth Engineering Students," Sustainability, vol. 12, p. 110, 2020.spa
dcterms.bibliographicCitation22. L. G. Obregon, J. C. Pertuz, and R. A. Dominguez, "Performance analysis of a laboratory scale cooling tower for different packing materials, water inlet temperature and mass flow ratio water-air," Revista Prospectiva, vol. 15, pp. 42-52, 2017.spa
dcterms.bibliographicCitation23. M. Lemouari, M. Boumaza, and A. Kaabi, "Experimental analysis of heat and mass transfer phenomena in a direct contact evaporative cooling tower," Energy Conversion and Management, vol. 50, pp. 1610-1617, 2009.spa
dcterms.bibliographicCitation24. L. G. Obregon, J. E. Duarte, and G. E. Valencia, "Effect of the area on the behavior of a mechanical draft wet cooling tower," Contemporary Engineering Sciences, vol. 11, pp. 2923-2929, 2018spa
dcterms.bibliographicCitation25. J.-U.-R. Khan, M. Yaqub, and S. M. Zubair, "Performance characteristics of counter flow wet cooling towers," Energy Conversion and Management, vol. 44, pp. 2073-2091, 2003.spa
dcterms.bibliographicCitation26. J. C. Kloppers, "A critical evaluation and refinement of the performance prediction of wet-cooling towers," Doctoral Thesis, University of Stellenbosch, 2003.spa
dcterms.bibliographicCitation27. A. A. Dreyer, "Analysis of evaporative coolers and condensers," Master of Engineering, Department of Mechanical Engineering, University of Stellenbosch, 1988.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.25103/jestr.143.05
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsCooling tower, Cross-sectional area, Energy, Mass Transfer Coefficient, Mathematical modelspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Químicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por