Mostrar el registro sencillo del ítem
Production and characterization of activated carbon from coal for gold adsorption in cyanide solutions
dc.contributor.author | Martínez-Mendoza, Karen L. | |
dc.contributor.other | Barraza-Burgos, Juan M. | |
dc.contributor.other | Marriaga-Cabrales, Nilson | |
dc.contributor.other | Machuca-Martinez, Fiderman | |
dc.contributor.other | Barajas, Mariber | |
dc.contributor.other | Romero, Manuel | |
dc.date.accessioned | 2022-11-15T19:28:01Z | |
dc.date.available | 2022-11-15T19:28:01Z | |
dc.date.issued | 2019-06-06 | |
dc.date.submitted | 2020-02-05 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/817 | |
dc.description.abstract | En este trabajo se produjeron carbones activados utilizando carbón mineral como materia prima procedente de siete zonas carboníferas colombianas. La activación física se efectuó en dos etapas: una etapa de carbonización con Nitrógeno, a una temperatura de 850 ◦C y un tiempo de residencia de 2 h, seguida de una segunda etapa de activación, usando vapor de agua, a temperaturas de 700 y 850 ◦C con tiempos de residencia de 1.5 h y 2.5 h. De acuerdo con la caracteriza-ción de volúmenes de poros para la adsorción de oro, se seleccionaron dos carbonos activados del departamento de Cundinamarca, obtenidos a 850 C-1.5 h, 850 C-2.5 h y un carbón activado comercial (GRC 22). Se realizaron pruebas de adsorción de oro con esos tres carbonos activados usando soluciones aurocianuradas sintéticas y una solución residual de oro. Los datos de las isotermas de adsorción se ajustaron usando el modelo de adsorción de Freundlich para la solución sintética, así como Langmuir para la solución residual. Los resultados mostraron que, usando una solución de 1 ppm, los carbonos activados C-850-2.5 y C-850-1.5 produjeron las mayores capacidades de carga de oro en el equilibrio (8.7 y 9.3 mg Au/g respectivamente) en comparación con el carbón activado comercial (4.7 mg Au/g). La prueba de adsorción de oro con la solución residual (21 ppm de oro) mostró que el carbón activado C- 850-1.5 presentó el mayor valor de capacidad de adsorción (4.58 mg Au/g)) en comparación con el carbón activado C-850-2.5 (2.95 mg Au/g). | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Revista Ingenieria e Investigacion - Editorial Board | spa |
dc.title | Production and characterization of activated carbon from coal for gold adsorption in cyanide solutions | spa |
dcterms.bibliographicCitation | ASTM D388-19a (2019). Standard Classification of Coals by Rank, ASTM International. 10.1520/D0388-19 | spa |
dcterms.bibliographicCitation | Abdollahi, S. B. (2015). A New Approach for Analysis of Adsorption from Liquid Phase: A Critical Review. Journal of Pollution Effects and Control, 3(2). 10.4172/2375- 4397.1000139 | spa |
dcterms.bibliographicCitation | Adams, M. D. (1989). The chemistry of the carbonin- pulp process (Doctoral dissertation, University of Witwatersrand, Johannesburg, South Africa). http://wire dspace.wits.ac.za/bitstream/handle/10539/15251/Adams %20Michael%20David%201989-001.pdf?sequence=1 | spa |
dcterms.bibliographicCitation | Adams, M. D., McDougall, G. J., and Hancock, R. D. (1987). Models for the adsorption of aurocyanide onto activated carbon. Part III: Comparison between the extraction of aurocyanide by activated carbon, polymeric adsorbents and 1-Pentanol. Hidrometallurgy, 19, 95-115. 10.1016/0304-386X(87)90044-2 | spa |
dcterms.bibliographicCitation | Benabithe, Z. Z., Arenas, E., Londoño, G., Rojas, D., Chejne, F., and Pérez, Juan D. (2005). Producción de carbón activado a partir de carbón subbituminoso en reactores de lecho fluidizado por proceso autotérmico. Dyna, 147, pp. 47-56. https://revistas.unal.edu.co/index.php/dyna/article/view/7 51/1219 | spa |
dcterms.bibliographicCitation | Fleming, C. A. (1984). The absorption of gold cyanide onto activated carbon. III. Factors influencing the rate of loading and the equilibrium capacity. Journal of the South African Institute of Mining and Metallurgy, 84(4), 85-93. https: //www.saimm.co.za/Journal/v084n04p085.pdf | spa |
dcterms.bibliographicCitation | Fleming, C. A., Mezei, A., Bourricaudy, E., Canizares, M., and Ashbury, M. (2011). Factors influencing the rate of gold cyanide leaching and adsorption on activated carbon, and their impact on the design of CIL and CIP circuits. Minerals Engineering, 24(6), 484-494. 10.1016/j.mineng.2011.03.021 | spa |
dcterms.bibliographicCitation | Gentzis, T., Hirosue, H., and Sakaki, T. (1996). Effect of Rank and Petrographic Composition on the Swelling Behavior of Coals. Energy Sources, 18(2), 131-141. 10.1080/00908319608908754 | spa |
dcterms.bibliographicCitation | Greenbank, M., and Spotts, S. (1993). Effects of starting material on activated carbon characteristics and performance. Proceedings of WATERTECH Expo. Expo ’93, Nov. 10-12, 1993 Houston, Texas. https://p2infohouse.org/ref/33/327 85.pdf | spa |
dcterms.bibliographicCitation | Ho, Y. S. (2004). Selection of optimum sorption isotherm. Carbon, 42(10), 2115-2116. 10.1016/j.carbon.2004.03.019 | spa |
dcterms.bibliographicCitation | Ibrado, A. S. and Fuerstenau, D. W. (1992). Effect of the structure of carbon adsorbents on the adsorption of gold cyanide. Hydrometallurgy, 30(1-3), 243-256. 10.1016/0304-386X(92)90087-G | spa |
dcterms.bibliographicCitation | Jia, Y. F., Steele, C. J., Hayward, I. P., and Thomas, K. M. (1998). Mechanism of adsorption of gold and silver species on activated carbons. Carbon, 36(9), 1299-1308. 10.1016/S0008-6223(98)00091-8 | spa |
dcterms.bibliographicCitation | Kiel, H. E., Sahaglan, J., and Sundstrom, D. W. (1975). Kinetics of the Activated Carbon-Steam Reaction. Industrial and Engineering Chemistry Process Design and Development, 14(4), 470-473. 10.1021/i260056a020 | spa |
dcterms.bibliographicCitation | Lagerge, S., Zajac, J., Partyka, S., and Groszek, A. J. (1999). Comparative study on the adsorption of cyanide gold complexes onto different carbonaceous samples: Measurement of the reversibility of the process and assessment of the active surface inferred by flow microcalorimetry. Langmuir, 15(14), 4803-4811. 10.1021/la980243t | spa |
dcterms.bibliographicCitation | Linares-Solano, A., Martín-Gullon, I., Salinas-Martínez De Lecea, C., and Serrano-Talavera, B. (2000). Activated carbons from bituminous coal: Effect of mineral matter content. Fuel, 79(6), 635-643. 10.1016/S0016-2361(99)00184-2 | spa |
dcterms.bibliographicCitation | McDougall, G. J., Hanckock, R. D., Nicol, M. J., Wellington, O. L., and Copperthwaite, R. G. (1980). The mechanism of the adsorption of gold cyanide on activated carbon. Journal of the South African Institute of Mining and Metallurgy, 344- 356. https://www.911metallurgist.com/wp-content/upl oads/2016/12/Adsorption-Capacity-of-gold-on-Activated- Carbon-1.pdf | spa |
dcterms.bibliographicCitation | McDougall, G. J., and Hancock, R. D. (1981). Gold complexes and activated carbon - A literature review. Gold Bulletin, 14(4), 138-153. 10.1007/BF03216558 | spa |
dcterms.bibliographicCitation | Ministerio de Minas y Energía (2012). Cadena del Carbón. (J. J. Manrique Galvis, Ed.) (UPME). Colombia: UPME. | spa |
dcterms.bibliographicCitation | Navarro, P. and Vargas, C. (2010). Efecto de las propiedades físicas del carbón activado en la adsorción de oro desde medio cianuro. Revista de Metalurgia, 46(3), 227-239. 10.3989/revmetalm.0929 | spa |
dcterms.bibliographicCitation | Navarro, P., Vargas, C., and Aguayo, C. (2009). Efecto de las propiedades físicas del carbón activado en la adsorción de oro en medio cianuro. Suplemento de la Revista Latinoamericana de Metalurgia y Materiales, 1(2), 829-838. http://www.rlmm.org/archivos/S01/N2/RLMMArt-09S01 N2-p829.pdf | spa |
dcterms.bibliographicCitation | Navarro, P. and Wilkomirsky, I. (1999). Efecto del oxígeno disuelto en la adsorción de oro en carbón activado. Revista de Metalurgia, 35, 301-307. 10.3989/revmetalm.1999.v35.i5.638 | spa |
dcterms.bibliographicCitation | Niksa, S. (1995). Predicting the devolatilization behavior of any coal from its ultimate analysis. Combustion and Flame, 100(3), 384-394. 10.1016/0010-2180(94)00060-6 | spa |
dcterms.bibliographicCitation | Pleysier, R., Dai, X., Wingate, C. J., and Jeffrey, M. I. (2008). Microtomography based identification of gold adsorption mechanisms, the measurement of activated carbon activity, and the effect of frothers on gold adsorption. Minerals Engineering, 21(6), 453-462. 10.1016/j.mineng.2007.12.007 | spa |
dcterms.bibliographicCitation | Qada, E. N. El, Allen, S. J., and Walker, G. M. (2008). Influence of preparation conditions on the characteristics of activated carbons produced in laboratory and pilot scale systems. Chemical Engineering Journal, 142(1), 1-13. 10.1016/j.cej.2007.11.008 | spa |
dcterms.bibliographicCitation | Seke, M. D., Sandenbergh, R. F., and Vegter, N. M. (2000). Effects of the textural and surface properties of activated carbon on the adsorption of gold di-cyanide. Minerals Engineering, 13(5), 527-540. 10.1016/S0892- 6875(00)00033-9 | spa |
dcterms.bibliographicCitation | Sheya, S. A. N., and Palmer, G. R. (1989). Effect of metal impurities on the adsorption of gold by activated carbon in cyanide solutions (Vol. 9268). US Dept. of the Interior, Bureau of Mines. https://stacks.cdc.gov/view/cdc/10427/ cdc_10427_DS1.pdf | spa |
dcterms.bibliographicCitation | Soleimani, M. and Kaghazchi, T. (2008). Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones – An agricultural waste. Bioreource Technology, 99(13), 5374- 5383. 10.1016/j.biortech.2007.11.021 | spa |
dcterms.bibliographicCitation | Uribe, L. M., López, M. E., and Gonz´ ales, A. G. (2013). Activación de carbón mineral mediante proceso físico en horno tubular horizontal y atmósfera inerte. Revista Colombiana de Materiales, 4(Abril), 93-108. https://apre ndeenlinea.udea.edu.co/revistas/index.php/materiales/art icle/view/15080 | spa |
dcterms.bibliographicCitation | van Deventer, J. et al. (2014) ‘Gold-Precious metals conference’. ALTA Gold-PM proceedings. Perth, Australia. Retreived from: https://www.altamet.com.au/wp-content/uplo ads/2014/07/ALTA-2014-GPM-Proceedings-Contents-A bstracts.pdf | spa |
dcterms.bibliographicCitation | Yalcin, M. and Arol, A. I. (2002). Gold cyanide adsorption characteristics of activated carbon of non-coconut shell origin. Hydrometallurgy, 63(2), 201-206. 10.1016/S0304- 386X(01)00203-1 | spa |
dcterms.bibliographicCitation | Yahya MA., Al-Qodah Z., Ngah CWZ. (2015). Agricultural bio-waste as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218-235. 10.1016/j.rser.2015.02.051 | spa |
dcterms.bibliographicCitation | Yin, C. Y., Ng, M. F., Saunders, M., Goh, B. M., Senanayake, G., Sherwood, A., and Hampton, M. (2014). New insights into the adsorption of aurocyanide ion on activated carbon surface: Electron microscopy analysis and computational studies using fullerene-like models. Langmuir, 30(26), 7703-7709. 10.1021/la501191h | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.15446/ing.investig.v40n1.80126 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | activated carbon, gold adsorption, microporosity, coal valorization. | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |