Mostrar el registro sencillo del ítem

dc.contributor.authorEspitia-Almeida, Fabián
dc.contributor.otherDiaz-Uribe, Carlos
dc.contributor.otherVallejo, William
dc.contributor.otherGómez-Camargo, Doris
dc.contributor.otherRomero Bohórquez, Arnold R.
dc.contributor.otherLinares-Flores, Cristian
dc.date.accessioned2022-11-15T19:26:14Z
dc.date.available2022-11-15T19:26:14Z
dc.date.issued2021-11-08
dc.date.submitted2021-05-12
dc.identifier.urihttps://hdl.handle.net/20.500.12834/812
dc.description.abstractBackground: Photodynamic therapy activity against different biological systems has been reported for porphyrins. Porphyrin modifications through peripheral groups and/or by metal insertion inside the ring are main alternatives for the improvement of its photophysical properties. In this study, we synthesized and characterized 5,10,15,20-tetrakis(4-bromophenyl)porphyrin and the dicloro5,10,15,20-tetrakis(4-bromophenyl)porphyrinato Sn(IV). Methods: Metal-free porphyrin was synthesized using the Alder method, while the Sn(IV)-porphyrin complex was prepared by combining metal-free porphyrin with stannous chloride in DMF; the reaction yields were 47% and 64% respectively. Metal-free porphyrin was characterized by UV-Vis, FT-IR, ESI-mass spectrometry and 13CNMR. Additionally, the Sn(IV) -porphyrin complex was characterized using UV-Vis and FT-IR. Cyclic voltammetry tests in four different solvents. The fluorescence quantum yield (Φf ) was measured using fluorescein as a standard, the singlet oxygen quantum yield (ΦD ) was estimated using the standard 5,10,15,20-(tetraphenyl)porphyrin (H2TPP) and the quencher of singlet oxygen 1,3- diphenylisobenzofuran (DPBF). Results: UV-Vis assay showed typical Q and Soret bands for porphyrin and its metallo-porphyrin complex. Compounds showed photoluminescence at the visible range of electromagnetic spectrum. The inclusion of the metal in the porphyrin core changed the Φf from 0.15 to 0.05 and the ΦD increased from 0.55 to 0.59. Finally, the effect of the compounds on the viability of L. panamensis was evaluated by means of the MTT test. The results showed that both compounds decreased the viability of the parasite; this inhibitory activity was greater under light irradiation; the porphyrin compound had IC50 of 16.5 μM and the Sn(IV)-porphyrin complex had IC50 of 19.2 μM. Conclusion: The compounds were synthesized efficiently, their characterization was carried out by different spectroscopy techniques and their own signals were evidenced for both structures, both compounds decreased the cell viability of L. panamensis.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceF1000Researchspa
dc.titlePhotophysical study and in vitro approach against Leishmania panamensis of dicloro-5,10,15,20-tetrakis(4- bromophenyl)porphyrinato Sn(IV)spa
dcterms.bibliographicCitation1. Marin D, Payerpaj S, Collier G, et al.: Efficient intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using delayed fluorescence, chemical quenching, and singlet oxygen emission. Phys Chem Chem Phys. 2015; 17: 29090.spa
dcterms.bibliographicCitation2. Ortiz A, Collier G, Marin D, et al.: The effects of heavy atoms on the exciton diffusion properties in photoactive thin films of tetrakis (4-carbomethoxyphenyl)porphyrins. J Mater Chem C. 2015; 3: 1243.spa
dcterms.bibliographicCitation3. Vecchi A, Galloni P, Floris B, et al.: Metallocenes meet porphyrinoids: Consequences of a “fusion”. Coord Chem Rev. 2015; 291: 95.spa
dcterms.bibliographicCitation4. Abada Z, Ferrié L, Akagah B, et al.: Synthesis and characterization of original N-meso chiral substituted diarylporphyrins. Tetrahedron Lett. 2012; 53: 6961.spa
dcterms.bibliographicCitation5. Mamardashvili G, Kaigorodova E, Khodov I, et al.: Micelles encapsulated Cо (III)-tetra(4-sulfophenyl) porphyrin in aqueous CTAB solutions: Micelle formation, imidazole binding and redox Co (III)/Co (II) processes. J Mol Liq. 2019; 293: 111471.spa
dcterms.bibliographicCitation6. Morgenthaler J, Peters S, Cedeño D, et al.: Carbaporphyrin ketals as potential agents for a new photodynamic therapy treatment of leishmaniasis. Bioorg Med Chem. 2008; 16: 7033spa
dcterms.bibliographicCitation7. Zheng W, Shan N, Yu L, et al.: UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dye Pigment. 2008; 77: 153.spa
dcterms.bibliographicCitation8. Lin Y, Zhou T, Bai T, et al.: Chemical approaches for the enhancement of skeletonphotodynamic therapy. J Enzyme Inhib Med Chem. 2020; 35(1): 1080.spa
dcterms.bibliographicCitation9. Yahia M, Knani S, Hsan L, et al.: Statistical studies of adsorption isotherms of iron nitrate and iron chloride on a thin layer of porphyrin. J Mol Liq. 2017; 248: 235.spa
dcterms.bibliographicCitation10. Sayyad M, Saleem M, Karimov K, et al.: Synthesis of Zn (II) 5,10,15,20-tetrakis(40 -isopropylphenyl) porphyrin and its use as a thin film sensor. Appl Phys. 2010; 98: 103.spa
dcterms.bibliographicCitation11. Ksenofontov A, Stupikova S, Bocharov P, et al.: Novel fluorescent sensors based on zinc (II) bis (dipyrromethenate) s for furosemide detection in organic media. J. Photochem. Photobiol. A Chem. 2019; 382: 111899.spa
dcterms.bibliographicCitation12. Ksenofontov A, Bichan N, Khodov I, et al.: Novel non-covalent supramolecular systems based on zinc (II) bis (dipyrromethenate) s with fullerenes. J Mol Liq. 2018; 269: 327.spa
dcterms.bibliographicCitation13. Imran M, Ramzan M, Qureshi A, et al.: Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging. Biosensors. 2018; 8: 95spa
dcterms.bibliographicCitation14. Calvete M, Yang G, Hanack M: Porphyrins and phthalocyanines as materials for optical limiting. Synth Met. 2004; 141: 231.spa
dcterms.bibliographicCitation15. Lefebvre J, Longevial J, Molvinger K, et al.: Porphyrins fused to N-heterocyclic carbene palladium complexes as tunable precatalysts in Mizoroki–Heck reactions: How the porphyrin can modulate the apparent catalytic activity? Comptes Rendus Chim. 2016; 19: 94.spa
dcterms.bibliographicCitation16. Wang T, She Y, Fu H, et al.: Selective cyclohexane oxidation catalyzed by manganese porphyrins and co-catalysts. Catal Today. 2016; 264: 185.spa
dcterms.bibliographicCitation17. Yin R, Dai T, Avci P, et al.: Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr Opin Pharmacol. 2013; 13: 731.spa
dcterms.bibliographicCitation18. Pinto J, Pereira A, De Oliveira M, et al.: Chlorin E6 phototoxicity in L. major and L. braziliensis promastigotes—In vitro study. Photodiagnosis Photodyn Ther. 2016; 15: 19.spa
dcterms.bibliographicCitation19. Abada Z, Cojean S, Pomel S, et al.: Synthesis and antiprotozoal activity of original porphyrin precursors and derivatives. Eur J Med Chem. 2013; 67: 158spa
dcterms.bibliographicCitation20. Kou J, Dou D, Yang L: Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget. 2017; 8: 81591.spa
dcterms.bibliographicCitation21. Jin J, Zhu Y, Zhang Z, et al.: Enhancing the Efficacy of Photodynamic Therapy through a Porphyrin/POSS Alternating Copolymer. Angew Chemie Int Ed. 2018; 57: 16354spa
dcterms.bibliographicCitation22. Zhang J, Jiang C, Figueiró J, et al.: An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B. 2018; 8: 137.spa
dcterms.bibliographicCitation23. Słota R, Broda M, Dyrda G, et al.: Structural and Molecular Characterization of meso-Substituted Zinc Porphyrins: A DFT Supported Study. Molecules. 2011; 16: 9957spa
dcterms.bibliographicCitation24. Berlanda J, Kiesslich T, Engelhardt V, et al.: Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. J Photochem. Photobiol B Biol. 2010; 100: 173.spa
dcterms.bibliographicCitation25. Allison R, Downie G, Cuenca R, et al.: Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther. 2004; 1: 27.spa
dcterms.bibliographicCitation26. Douillard S, Lhommeau I, Olivier D, et al.: In vitro evaluation of Radachlorin® sensitizer for photodynamic therapy. J Photochem Photobiol B Biol. 2010; 98: 128spa
dcterms.bibliographicCitation27. Khodov I, Maltceva O, Klochkov V, et al.: N-Confused porphyrins: Complexation and 1H NMR studies. New J Chem. 2017; 41: 7932spa
dcterms.bibliographicCitation28. Lopez T, Ortiz E, Alvarez M, et al.: Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications. Nanomedicine Nanotechnology. Biol Med. 2010; 6: 777.spa
dcterms.bibliographicCitation29. Gardner D, Taylor V, Cedeño D, et al.: Association of Acenaphthoporphyrins with Liposomes for the Photodynamic Treatment of Leishmaniasis. Photochem. Photobiol. 2010; 86: 645spa
dcterms.bibliographicCitation30. Piccin JS, Dotto GL, Pinto LAA: Adsorption Isotherms and Thermochemical data of FD&C RED N° 40 Binding by Qhitosan. Brazilian J Chem Eng. 2011; 28: 295.spa
dcterms.bibliographicCitation31. Bristow C, Hudson R, Paget T, et al.: Potential of cationic porphyrins for photodynamic treatment of cutaneous Leishmaniasis. Photodiagnosis Photodyn Ther. 2006; 3: 162.spa
dcterms.bibliographicCitation32. Montanari J, Maidana C, Esteva M, et al.: Sunlight triggered photodynamic ultradeformable liposomes against Leishmania braziliensis are also leishmanicidal in the dark. J Control Release. 2010; 147: 368spa
dcterms.bibliographicCitation33. Gomes M, DeFreitas-Silva G, Dos Reis P, et al.: Synthesis and characterization of bismuth (III) and antimony(V) porphyrins: high antileishmanial activity against antimony-resistant parasite. J Biol Inorg Chem. 2015; 20: 771.spa
dcterms.bibliographicCitation34. Andrade C, Figueiredo R, Ribeiro K, et al.: Photodynamic effect of zinc porphyrin on the promastigote and amastigote forms of Leishmania braziliensis. Photochem Photobiol Sci. 2018; 17: 482.spa
dcterms.bibliographicCitation35. De Annunzio S, Costa N, Graminha M, et al.: Chlorin, phthalocyanine, and porphyrin types derivatives in phototreatment of cutaneous manifestations: A review. Int J Mol Sci. 2019; 20: 3861.spa
dcterms.bibliographicCitation36. Adler A, Longo F, Shergalis W: Mechanistic Investigations of Porphyrin Syntheses. I. Preliminary Studies on msTetraphenylporphin. J Am Chem Soc. 1964; 86: 3145.spa
dcterms.bibliographicCitation37. Espitia-Almeida F, Díaz-Uribe C, Vallejo W, et al.: In Vitro AntiLeishmanial Effect of Metallic Meso-Substituted Porphyrin Derivatives against Leishmania braziliensis and Leishmania panamensis Promastigotes Properties. Molecules. 2020; 25(8): 1887.spa
dcterms.bibliographicCitation38. Khodov I, Nikiforov M, Alper G, et al.: Synthesis and spectroscopic characterization of Ru (II) and Sn (IV)-porphyrins supramolecular complexes. J Mol Struct. 2015; 1081: 426spa
dcterms.bibliographicCitation39. Manke A, Geisel K, Fetzer A, et al.: A water-soluble tin (IV) porphyrin as a bioinspired photosensitiser for light-driven proton-reduction. Phys Chem Chem Phys. 2014; 16: 12029.spa
dcterms.bibliographicCitation40. Guillaumot D, Issawi M, Da Silva A, et al.: Synergistic enhancement of tolerance mechanisms in response to photoactivation of cationic tetra (N-methylpyridyl) porphyrins in tomato plantlets. J Photochem Photobiol B Biol. 2016; 156: 69.spa
dcterms.bibliographicCitation41. Zoltan T, Vargas F, López V, et al.: Influence of charge and metal coordination of meso-substituted porphyrins on bacterial photoinactivation. Spectrochim. Acta Part A Mol Biomol. Spectrosc. 2015; 135: 747.spa
dcterms.bibliographicCitation42. Akilov O, Kosaka S, O'Riordan K, et al.: Parasiticidal effect of deltaaminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells. Exp Dermatol. 2007; 16: 651.spa
dcterms.bibliographicCitation43. Moreira M, Del Portillo H, Milder R, et al.: Heat shock induction of apoptosis in promastigotes of the unicellular organismLeishmania (Leishmania) amazonensis. J Cell Physiol. 1996; 167: 305.spa
dcterms.bibliographicCitation44. Kiderlen A, Kaye P: A modified colorimetric assay of macrophage activation for intracellular cytotoxicity against Leishmania parasites. J Immunol Methods. 1990; 127: 11.spa
dcterms.bibliographicCitation45. Andrade C, Figueiredo R, Ribeiro K, et al.: Photodynamic effect of zinc porphyrin on the promastigote and amastigote forms of Leishmania braziliensis. Photochem Photobiol Sci. 2018; 17: 482.spa
dcterms.bibliographicCitation46. Grabolle M, Spieles M, Lesnyak V, et al.: Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Anal Chem. 2009; 81: 6285.spa
dcterms.bibliographicCitation47. Aratani N, Takagi A, Yanagawa Y, et al.: Giantmeso-meso-Linked Porphyrin Arrays of Micrometer Molecular Length and Their Fabrication. Chem A Eur J. 2005; 11: 3389.spa
dcterms.bibliographicCitation48. Wohrle D: The colours of life. An introduction to the chemistry of porphyrins and related compounds. Adv Mater. 1997; 9: 1191spa
dcterms.bibliographicCitation49. Giovannetti R: The Use of Spectrophotometry UV-Vis for the Study of Porphyrins. In: Macro To Nano Spectroscopy. Dr Jamal U, Ed.; InTech; 2012; 987-953-51-0664-7spa
dcterms.bibliographicCitation50. Ohsaki Y, Thomas A, Kuttassery F, et al.: How does the tin (IV)-insertion to porphyrins proceed in water at ambient temperature?: Re-investigation by time dependent 1H NMR and detection of intermediates. Inorganica Chim Acta. 2018; 482: 914.spa
dcterms.bibliographicCitation51. Kurniawan F, Miura Y, Kartasasmita R, et al.: In Silico Study, Synthesis, and Cytotoxic Activities of Porphyrin Derivatives. Pharmaceuticals. 2018; 11: 8spa
dcterms.bibliographicCitation52. Hanefeld U, Lefferts L: Catalysis: An integrated textbook for students. In: Ulf H, Lefferts L, Ed.; Wiley-Blackwell; 2018; 9783527341597.spa
dcterms.bibliographicCitation53. Bashkatov AN, Genina EA, Kochubey VI, et al.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D: Appl Phys. 2005; 38: 2543.spa
dcterms.bibliographicCitation54. Mamardashvili G, Maltceva O, Lazovskiy D, et al.: Medium viscosity effect on fluorescent properties of Sn (IV)-tetra (4-sulfonatophenyl) porphyrin complexes in buffer solutions. J Mol Liq. 2019; 277: 1047.spa
dcterms.bibliographicCitation55. Diaz-Uribe C, Vallejo L, Miranda J: Photo-Fenton oxidation of phenol with Fe (III)-tetra-4-carboxyphenylporphyrin/SiO2 assisted with visible light. J Photochem Photobiol A Chem. 2014; 294: 75.spa
dcterms.bibliographicCitation56. Kadish K, Smith K, Guilard R: The porphyrin handbook. In: Phthalocyanines: spectroscopic and electrochemical characterization Academic Press; 2003; Volume 16, 9780080923901.spa
dcterms.bibliographicCitation57. Boscencu R, Oliveira A, Ferreira D, et al.: Synthesis and Spectral Evaluation of Some Unsymmetrical Mesoporphyrinic Complexes. Int J Mol Sci. 2012; 13: 8112spa
dcterms.bibliographicCitation58. Dube E, Nwaji N, Oluwole D, et al.: Investigation of photophysicochemical properties of zinc phthalocyanines conjugated to metallic nanoparticles. J Photochem Photobiol A Chem. 2017; 349: 148.spa
dcterms.bibliographicCitation59. Ormond A, Freeman H: Effects of substituents on the photophysical properties of symmetrical porphyrins. Dye Pigment. 2013; 96: 440.spa
dcterms.bibliographicCitation60. Shao W, Wang H, He S, et al.: Photophysical Properties and Singlet Oxygen Generation of Three Sets of Halogenated Corroles. J Phys Chem B. 2012; 116: 14228.spa
dcterms.bibliographicCitation61. Bonnett R: Chemical Aspects of Photodynamic Therapy. CRC Press; 2014; 9781482296952.spa
dcterms.bibliographicCitation62. Valencia U, Lemp E, Zanocco A: Quantum Yields of Singlet Molecular Oxygen, O2(1 Dg), produced by antimalaric drugs in organic solvents. J Chil Chem Soc. 2003; 48: 17.spa
dcterms.bibliographicCitation63. Kristensen S, Orsteen A, Sande S, et al.: Photoreactivity of biologically active compounds VII. Interaction of antimalarial drugs with melanin in vitro as part of phototoxicity screening. J Photochem Photobiol B Biol. 1994; 26: 87.spa
dcterms.bibliographicCitation64. Irigoyen J, Blanco L, López S: Electrochemical Characterization: Metallization of Two Novel Asymmetric Meso-Subtstituted Porphyrins. Int J Electrochem Sci. 2012; 7: 11246spa
dcterms.bibliographicCitation65. Tran T, Chang Y, Hoang T, et al.: Electrochemical Behavior of mesoSubstituted Porphyrins: The Role of Cation Radicals to the HalfWave Oxidation Potential Splitting. J Phys Chem A. 2016; 120: 5511spa
dcterms.bibliographicCitation66. Spyroulias G, Despotopoulos A, Raptopoulou C, et al.: Comparative Study of StructureProperties Relationship for Novel β-Halogenated Lanthanide Porphyrins and Their Nickel and Free Bases Precursors, as a Function of Number and Nature of Halogens Atoms⊥. Inorg Chem. 2002; 41: 2648.spa
dcterms.bibliographicCitation67. Chen H, Reek J, Williams R, et al.: Halogenated earth abundant metalloporphyrins as photostable sensitizers for visible-lightdriven water oxidation in a neutral phosphate buffer solution. Phys Chem Chem Phys. 2016; 18: 15191.spa
dcterms.bibliographicCitation68. Kanan D, Carter E: Band Gap Engineering of MnO via ZnO Alloying: A Potential New Visible-Light Photocatalyst. J. Phys. Chem. C. 2012; 116: 9876.spa
dcterms.bibliographicCitation69. Kadish K, Smith K, Guilard R: The porphyrin handbook. Academic Press; 2000; 9780123932211.spa
dcterms.bibliographicCitation70. Kadish K, Van Caemelbecke E: Electrochemistry of porphyrins and related macrocycles. J Solid State Electrochem. 2003; 7: 254.spa
dcterms.bibliographicCitation71. Cinghită D, Radovan C, Dascălu D: Anodic Voltammetry of Thioacetamide and its Amperometric Determination in Aqueous Media. Sensors. 2008; 8: 4560.spa
dcterms.bibliographicCitation72. Radi A, Eissa S: Voltammetric and spectrophotometric study on the complexation of glibenclamide with β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2010; 68: 417.spa
dcterms.bibliographicCitation73. Sivakumar K, Hemalatha G, Parameswari M: Spectral, electrochemical and docking studies of 5-indanol: β-CD inclusion complex. Phys Chem Liq. 2013; 51: 567.spa
dcterms.bibliographicCitation74. Lü F, Gao L, Li H, et al.: Molecular engineered silica surfaces with an assembled anthracene monolayer as a fluorescent sensor for organic copper (II) salts. Appl Surf Sci. 2007; 253: 4123.spa
dcterms.bibliographicCitation75. Cieplik F, Deng D, Crielaard W, et al.: Antimicrobial photodynamic therapy–what we know and what we don’t. Crit Rev Microbiol. 2018; 44: 571.spa
dcterms.bibliographicCitation76. Pummer A, Knüttel H, Hiller K, et al.: Antimicrobial efficacy of irradiation with visible light on oral bacteria in vitro: a systematic review. Future Med Chem. 2017; 9: 1557.spa
dcterms.bibliographicCitation77. Ribeiro A, Andrade M, Bagnato V, et al.: Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions. Lasers Med Sci. 2015; 30: 549spa
dcterms.bibliographicCitation78. Song D, Lindoso J, Oyafuso L, et al.: Photodynamic Therapy Using Methylene Blue to Treat Cutaneous Leishmaniasis. Photomed Laser Surg. 2011; 29: 711spa
dcterms.bibliographicCitation79. Espitia-Almeida F: Complementary material. Mendeley Data. 2021: V1.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.5256/f1000research.78968.r99462
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsPhotodynamic therapy, porphyrin, Leishmania panamensis, Photophysical study, in vitro, porphyrinatospa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por