Mostrar el registro sencillo del ítem
Photophysical study and in vitro approach against Leishmania panamensis of dicloro-5,10,15,20-tetrakis(4- bromophenyl)porphyrinato Sn(IV)
dc.contributor.author | Espitia-Almeida, Fabián | |
dc.contributor.other | Diaz-Uribe, Carlos | |
dc.contributor.other | Vallejo, William | |
dc.contributor.other | Gómez-Camargo, Doris | |
dc.contributor.other | Romero Bohórquez, Arnold R. | |
dc.contributor.other | Linares-Flores, Cristian | |
dc.date.accessioned | 2022-11-15T19:26:14Z | |
dc.date.available | 2022-11-15T19:26:14Z | |
dc.date.issued | 2021-11-08 | |
dc.date.submitted | 2021-05-12 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/812 | |
dc.description.abstract | Background: Photodynamic therapy activity against different biological systems has been reported for porphyrins. Porphyrin modifications through peripheral groups and/or by metal insertion inside the ring are main alternatives for the improvement of its photophysical properties. In this study, we synthesized and characterized 5,10,15,20-tetrakis(4-bromophenyl)porphyrin and the dicloro5,10,15,20-tetrakis(4-bromophenyl)porphyrinato Sn(IV). Methods: Metal-free porphyrin was synthesized using the Alder method, while the Sn(IV)-porphyrin complex was prepared by combining metal-free porphyrin with stannous chloride in DMF; the reaction yields were 47% and 64% respectively. Metal-free porphyrin was characterized by UV-Vis, FT-IR, ESI-mass spectrometry and 13CNMR. Additionally, the Sn(IV) -porphyrin complex was characterized using UV-Vis and FT-IR. Cyclic voltammetry tests in four different solvents. The fluorescence quantum yield (Φf ) was measured using fluorescein as a standard, the singlet oxygen quantum yield (ΦD ) was estimated using the standard 5,10,15,20-(tetraphenyl)porphyrin (H2TPP) and the quencher of singlet oxygen 1,3- diphenylisobenzofuran (DPBF). Results: UV-Vis assay showed typical Q and Soret bands for porphyrin and its metallo-porphyrin complex. Compounds showed photoluminescence at the visible range of electromagnetic spectrum. The inclusion of the metal in the porphyrin core changed the Φf from 0.15 to 0.05 and the ΦD increased from 0.55 to 0.59. Finally, the effect of the compounds on the viability of L. panamensis was evaluated by means of the MTT test. The results showed that both compounds decreased the viability of the parasite; this inhibitory activity was greater under light irradiation; the porphyrin compound had IC50 of 16.5 μM and the Sn(IV)-porphyrin complex had IC50 of 19.2 μM. Conclusion: The compounds were synthesized efficiently, their characterization was carried out by different spectroscopy techniques and their own signals were evidenced for both structures, both compounds decreased the cell viability of L. panamensis. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | F1000Research | spa |
dc.title | Photophysical study and in vitro approach against Leishmania panamensis of dicloro-5,10,15,20-tetrakis(4- bromophenyl)porphyrinato Sn(IV) | spa |
dcterms.bibliographicCitation | 1. Marin D, Payerpaj S, Collier G, et al.: Efficient intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using delayed fluorescence, chemical quenching, and singlet oxygen emission. Phys Chem Chem Phys. 2015; 17: 29090. | spa |
dcterms.bibliographicCitation | 2. Ortiz A, Collier G, Marin D, et al.: The effects of heavy atoms on the exciton diffusion properties in photoactive thin films of tetrakis (4-carbomethoxyphenyl)porphyrins. J Mater Chem C. 2015; 3: 1243. | spa |
dcterms.bibliographicCitation | 3. Vecchi A, Galloni P, Floris B, et al.: Metallocenes meet porphyrinoids: Consequences of a “fusion”. Coord Chem Rev. 2015; 291: 95. | spa |
dcterms.bibliographicCitation | 4. Abada Z, Ferrié L, Akagah B, et al.: Synthesis and characterization of original N-meso chiral substituted diarylporphyrins. Tetrahedron Lett. 2012; 53: 6961. | spa |
dcterms.bibliographicCitation | 5. Mamardashvili G, Kaigorodova E, Khodov I, et al.: Micelles encapsulated Cо (III)-tetra(4-sulfophenyl) porphyrin in aqueous CTAB solutions: Micelle formation, imidazole binding and redox Co (III)/Co (II) processes. J Mol Liq. 2019; 293: 111471. | spa |
dcterms.bibliographicCitation | 6. Morgenthaler J, Peters S, Cedeño D, et al.: Carbaporphyrin ketals as potential agents for a new photodynamic therapy treatment of leishmaniasis. Bioorg Med Chem. 2008; 16: 7033 | spa |
dcterms.bibliographicCitation | 7. Zheng W, Shan N, Yu L, et al.: UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dye Pigment. 2008; 77: 153. | spa |
dcterms.bibliographicCitation | 8. Lin Y, Zhou T, Bai T, et al.: Chemical approaches for the enhancement of skeletonphotodynamic therapy. J Enzyme Inhib Med Chem. 2020; 35(1): 1080. | spa |
dcterms.bibliographicCitation | 9. Yahia M, Knani S, Hsan L, et al.: Statistical studies of adsorption isotherms of iron nitrate and iron chloride on a thin layer of porphyrin. J Mol Liq. 2017; 248: 235. | spa |
dcterms.bibliographicCitation | 10. Sayyad M, Saleem M, Karimov K, et al.: Synthesis of Zn (II) 5,10,15,20-tetrakis(40 -isopropylphenyl) porphyrin and its use as a thin film sensor. Appl Phys. 2010; 98: 103. | spa |
dcterms.bibliographicCitation | 11. Ksenofontov A, Stupikova S, Bocharov P, et al.: Novel fluorescent sensors based on zinc (II) bis (dipyrromethenate) s for furosemide detection in organic media. J. Photochem. Photobiol. A Chem. 2019; 382: 111899. | spa |
dcterms.bibliographicCitation | 12. Ksenofontov A, Bichan N, Khodov I, et al.: Novel non-covalent supramolecular systems based on zinc (II) bis (dipyrromethenate) s with fullerenes. J Mol Liq. 2018; 269: 327. | spa |
dcterms.bibliographicCitation | 13. Imran M, Ramzan M, Qureshi A, et al.: Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging. Biosensors. 2018; 8: 95 | spa |
dcterms.bibliographicCitation | 14. Calvete M, Yang G, Hanack M: Porphyrins and phthalocyanines as materials for optical limiting. Synth Met. 2004; 141: 231. | spa |
dcterms.bibliographicCitation | 15. Lefebvre J, Longevial J, Molvinger K, et al.: Porphyrins fused to N-heterocyclic carbene palladium complexes as tunable precatalysts in Mizoroki–Heck reactions: How the porphyrin can modulate the apparent catalytic activity? Comptes Rendus Chim. 2016; 19: 94. | spa |
dcterms.bibliographicCitation | 16. Wang T, She Y, Fu H, et al.: Selective cyclohexane oxidation catalyzed by manganese porphyrins and co-catalysts. Catal Today. 2016; 264: 185. | spa |
dcterms.bibliographicCitation | 17. Yin R, Dai T, Avci P, et al.: Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr Opin Pharmacol. 2013; 13: 731. | spa |
dcterms.bibliographicCitation | 18. Pinto J, Pereira A, De Oliveira M, et al.: Chlorin E6 phototoxicity in L. major and L. braziliensis promastigotes—In vitro study. Photodiagnosis Photodyn Ther. 2016; 15: 19. | spa |
dcterms.bibliographicCitation | 19. Abada Z, Cojean S, Pomel S, et al.: Synthesis and antiprotozoal activity of original porphyrin precursors and derivatives. Eur J Med Chem. 2013; 67: 158 | spa |
dcterms.bibliographicCitation | 20. Kou J, Dou D, Yang L: Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget. 2017; 8: 81591. | spa |
dcterms.bibliographicCitation | 21. Jin J, Zhu Y, Zhang Z, et al.: Enhancing the Efficacy of Photodynamic Therapy through a Porphyrin/POSS Alternating Copolymer. Angew Chemie Int Ed. 2018; 57: 16354 | spa |
dcterms.bibliographicCitation | 22. Zhang J, Jiang C, Figueiró J, et al.: An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B. 2018; 8: 137. | spa |
dcterms.bibliographicCitation | 23. Słota R, Broda M, Dyrda G, et al.: Structural and Molecular Characterization of meso-Substituted Zinc Porphyrins: A DFT Supported Study. Molecules. 2011; 16: 9957 | spa |
dcterms.bibliographicCitation | 24. Berlanda J, Kiesslich T, Engelhardt V, et al.: Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. J Photochem. Photobiol B Biol. 2010; 100: 173. | spa |
dcterms.bibliographicCitation | 25. Allison R, Downie G, Cuenca R, et al.: Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther. 2004; 1: 27. | spa |
dcterms.bibliographicCitation | 26. Douillard S, Lhommeau I, Olivier D, et al.: In vitro evaluation of Radachlorin® sensitizer for photodynamic therapy. J Photochem Photobiol B Biol. 2010; 98: 128 | spa |
dcterms.bibliographicCitation | 27. Khodov I, Maltceva O, Klochkov V, et al.: N-Confused porphyrins: Complexation and 1H NMR studies. New J Chem. 2017; 41: 7932 | spa |
dcterms.bibliographicCitation | 28. Lopez T, Ortiz E, Alvarez M, et al.: Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications. Nanomedicine Nanotechnology. Biol Med. 2010; 6: 777. | spa |
dcterms.bibliographicCitation | 29. Gardner D, Taylor V, Cedeño D, et al.: Association of Acenaphthoporphyrins with Liposomes for the Photodynamic Treatment of Leishmaniasis. Photochem. Photobiol. 2010; 86: 645 | spa |
dcterms.bibliographicCitation | 30. Piccin JS, Dotto GL, Pinto LAA: Adsorption Isotherms and Thermochemical data of FD&C RED N° 40 Binding by Qhitosan. Brazilian J Chem Eng. 2011; 28: 295. | spa |
dcterms.bibliographicCitation | 31. Bristow C, Hudson R, Paget T, et al.: Potential of cationic porphyrins for photodynamic treatment of cutaneous Leishmaniasis. Photodiagnosis Photodyn Ther. 2006; 3: 162. | spa |
dcterms.bibliographicCitation | 32. Montanari J, Maidana C, Esteva M, et al.: Sunlight triggered photodynamic ultradeformable liposomes against Leishmania braziliensis are also leishmanicidal in the dark. J Control Release. 2010; 147: 368 | spa |
dcterms.bibliographicCitation | 33. Gomes M, DeFreitas-Silva G, Dos Reis P, et al.: Synthesis and characterization of bismuth (III) and antimony(V) porphyrins: high antileishmanial activity against antimony-resistant parasite. J Biol Inorg Chem. 2015; 20: 771. | spa |
dcterms.bibliographicCitation | 34. Andrade C, Figueiredo R, Ribeiro K, et al.: Photodynamic effect of zinc porphyrin on the promastigote and amastigote forms of Leishmania braziliensis. Photochem Photobiol Sci. 2018; 17: 482. | spa |
dcterms.bibliographicCitation | 35. De Annunzio S, Costa N, Graminha M, et al.: Chlorin, phthalocyanine, and porphyrin types derivatives in phototreatment of cutaneous manifestations: A review. Int J Mol Sci. 2019; 20: 3861. | spa |
dcterms.bibliographicCitation | 36. Adler A, Longo F, Shergalis W: Mechanistic Investigations of Porphyrin Syntheses. I. Preliminary Studies on msTetraphenylporphin. J Am Chem Soc. 1964; 86: 3145. | spa |
dcterms.bibliographicCitation | 37. Espitia-Almeida F, Díaz-Uribe C, Vallejo W, et al.: In Vitro AntiLeishmanial Effect of Metallic Meso-Substituted Porphyrin Derivatives against Leishmania braziliensis and Leishmania panamensis Promastigotes Properties. Molecules. 2020; 25(8): 1887. | spa |
dcterms.bibliographicCitation | 38. Khodov I, Nikiforov M, Alper G, et al.: Synthesis and spectroscopic characterization of Ru (II) and Sn (IV)-porphyrins supramolecular complexes. J Mol Struct. 2015; 1081: 426 | spa |
dcterms.bibliographicCitation | 39. Manke A, Geisel K, Fetzer A, et al.: A water-soluble tin (IV) porphyrin as a bioinspired photosensitiser for light-driven proton-reduction. Phys Chem Chem Phys. 2014; 16: 12029. | spa |
dcterms.bibliographicCitation | 40. Guillaumot D, Issawi M, Da Silva A, et al.: Synergistic enhancement of tolerance mechanisms in response to photoactivation of cationic tetra (N-methylpyridyl) porphyrins in tomato plantlets. J Photochem Photobiol B Biol. 2016; 156: 69. | spa |
dcterms.bibliographicCitation | 41. Zoltan T, Vargas F, López V, et al.: Influence of charge and metal coordination of meso-substituted porphyrins on bacterial photoinactivation. Spectrochim. Acta Part A Mol Biomol. Spectrosc. 2015; 135: 747. | spa |
dcterms.bibliographicCitation | 42. Akilov O, Kosaka S, O'Riordan K, et al.: Parasiticidal effect of deltaaminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells. Exp Dermatol. 2007; 16: 651. | spa |
dcterms.bibliographicCitation | 43. Moreira M, Del Portillo H, Milder R, et al.: Heat shock induction of apoptosis in promastigotes of the unicellular organismLeishmania (Leishmania) amazonensis. J Cell Physiol. 1996; 167: 305. | spa |
dcterms.bibliographicCitation | 44. Kiderlen A, Kaye P: A modified colorimetric assay of macrophage activation for intracellular cytotoxicity against Leishmania parasites. J Immunol Methods. 1990; 127: 11. | spa |
dcterms.bibliographicCitation | 45. Andrade C, Figueiredo R, Ribeiro K, et al.: Photodynamic effect of zinc porphyrin on the promastigote and amastigote forms of Leishmania braziliensis. Photochem Photobiol Sci. 2018; 17: 482. | spa |
dcterms.bibliographicCitation | 46. Grabolle M, Spieles M, Lesnyak V, et al.: Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Anal Chem. 2009; 81: 6285. | spa |
dcterms.bibliographicCitation | 47. Aratani N, Takagi A, Yanagawa Y, et al.: Giantmeso-meso-Linked Porphyrin Arrays of Micrometer Molecular Length and Their Fabrication. Chem A Eur J. 2005; 11: 3389. | spa |
dcterms.bibliographicCitation | 48. Wohrle D: The colours of life. An introduction to the chemistry of porphyrins and related compounds. Adv Mater. 1997; 9: 1191 | spa |
dcterms.bibliographicCitation | 49. Giovannetti R: The Use of Spectrophotometry UV-Vis for the Study of Porphyrins. In: Macro To Nano Spectroscopy. Dr Jamal U, Ed.; InTech; 2012; 987-953-51-0664-7 | spa |
dcterms.bibliographicCitation | 50. Ohsaki Y, Thomas A, Kuttassery F, et al.: How does the tin (IV)-insertion to porphyrins proceed in water at ambient temperature?: Re-investigation by time dependent 1H NMR and detection of intermediates. Inorganica Chim Acta. 2018; 482: 914. | spa |
dcterms.bibliographicCitation | 51. Kurniawan F, Miura Y, Kartasasmita R, et al.: In Silico Study, Synthesis, and Cytotoxic Activities of Porphyrin Derivatives. Pharmaceuticals. 2018; 11: 8 | spa |
dcterms.bibliographicCitation | 52. Hanefeld U, Lefferts L: Catalysis: An integrated textbook for students. In: Ulf H, Lefferts L, Ed.; Wiley-Blackwell; 2018; 9783527341597. | spa |
dcterms.bibliographicCitation | 53. Bashkatov AN, Genina EA, Kochubey VI, et al.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D: Appl Phys. 2005; 38: 2543. | spa |
dcterms.bibliographicCitation | 54. Mamardashvili G, Maltceva O, Lazovskiy D, et al.: Medium viscosity effect on fluorescent properties of Sn (IV)-tetra (4-sulfonatophenyl) porphyrin complexes in buffer solutions. J Mol Liq. 2019; 277: 1047. | spa |
dcterms.bibliographicCitation | 55. Diaz-Uribe C, Vallejo L, Miranda J: Photo-Fenton oxidation of phenol with Fe (III)-tetra-4-carboxyphenylporphyrin/SiO2 assisted with visible light. J Photochem Photobiol A Chem. 2014; 294: 75. | spa |
dcterms.bibliographicCitation | 56. Kadish K, Smith K, Guilard R: The porphyrin handbook. In: Phthalocyanines: spectroscopic and electrochemical characterization Academic Press; 2003; Volume 16, 9780080923901. | spa |
dcterms.bibliographicCitation | 57. Boscencu R, Oliveira A, Ferreira D, et al.: Synthesis and Spectral Evaluation of Some Unsymmetrical Mesoporphyrinic Complexes. Int J Mol Sci. 2012; 13: 8112 | spa |
dcterms.bibliographicCitation | 58. Dube E, Nwaji N, Oluwole D, et al.: Investigation of photophysicochemical properties of zinc phthalocyanines conjugated to metallic nanoparticles. J Photochem Photobiol A Chem. 2017; 349: 148. | spa |
dcterms.bibliographicCitation | 59. Ormond A, Freeman H: Effects of substituents on the photophysical properties of symmetrical porphyrins. Dye Pigment. 2013; 96: 440. | spa |
dcterms.bibliographicCitation | 60. Shao W, Wang H, He S, et al.: Photophysical Properties and Singlet Oxygen Generation of Three Sets of Halogenated Corroles. J Phys Chem B. 2012; 116: 14228. | spa |
dcterms.bibliographicCitation | 61. Bonnett R: Chemical Aspects of Photodynamic Therapy. CRC Press; 2014; 9781482296952. | spa |
dcterms.bibliographicCitation | 62. Valencia U, Lemp E, Zanocco A: Quantum Yields of Singlet Molecular Oxygen, O2(1 Dg), produced by antimalaric drugs in organic solvents. J Chil Chem Soc. 2003; 48: 17. | spa |
dcterms.bibliographicCitation | 63. Kristensen S, Orsteen A, Sande S, et al.: Photoreactivity of biologically active compounds VII. Interaction of antimalarial drugs with melanin in vitro as part of phototoxicity screening. J Photochem Photobiol B Biol. 1994; 26: 87. | spa |
dcterms.bibliographicCitation | 64. Irigoyen J, Blanco L, López S: Electrochemical Characterization: Metallization of Two Novel Asymmetric Meso-Subtstituted Porphyrins. Int J Electrochem Sci. 2012; 7: 11246 | spa |
dcterms.bibliographicCitation | 65. Tran T, Chang Y, Hoang T, et al.: Electrochemical Behavior of mesoSubstituted Porphyrins: The Role of Cation Radicals to the HalfWave Oxidation Potential Splitting. J Phys Chem A. 2016; 120: 5511 | spa |
dcterms.bibliographicCitation | 66. Spyroulias G, Despotopoulos A, Raptopoulou C, et al.: Comparative Study of StructureProperties Relationship for Novel β-Halogenated Lanthanide Porphyrins and Their Nickel and Free Bases Precursors, as a Function of Number and Nature of Halogens Atoms⊥. Inorg Chem. 2002; 41: 2648. | spa |
dcterms.bibliographicCitation | 67. Chen H, Reek J, Williams R, et al.: Halogenated earth abundant metalloporphyrins as photostable sensitizers for visible-lightdriven water oxidation in a neutral phosphate buffer solution. Phys Chem Chem Phys. 2016; 18: 15191. | spa |
dcterms.bibliographicCitation | 68. Kanan D, Carter E: Band Gap Engineering of MnO via ZnO Alloying: A Potential New Visible-Light Photocatalyst. J. Phys. Chem. C. 2012; 116: 9876. | spa |
dcterms.bibliographicCitation | 69. Kadish K, Smith K, Guilard R: The porphyrin handbook. Academic Press; 2000; 9780123932211. | spa |
dcterms.bibliographicCitation | 70. Kadish K, Van Caemelbecke E: Electrochemistry of porphyrins and related macrocycles. J Solid State Electrochem. 2003; 7: 254. | spa |
dcterms.bibliographicCitation | 71. Cinghită D, Radovan C, Dascălu D: Anodic Voltammetry of Thioacetamide and its Amperometric Determination in Aqueous Media. Sensors. 2008; 8: 4560. | spa |
dcterms.bibliographicCitation | 72. Radi A, Eissa S: Voltammetric and spectrophotometric study on the complexation of glibenclamide with β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2010; 68: 417. | spa |
dcterms.bibliographicCitation | 73. Sivakumar K, Hemalatha G, Parameswari M: Spectral, electrochemical and docking studies of 5-indanol: β-CD inclusion complex. Phys Chem Liq. 2013; 51: 567. | spa |
dcterms.bibliographicCitation | 74. Lü F, Gao L, Li H, et al.: Molecular engineered silica surfaces with an assembled anthracene monolayer as a fluorescent sensor for organic copper (II) salts. Appl Surf Sci. 2007; 253: 4123. | spa |
dcterms.bibliographicCitation | 75. Cieplik F, Deng D, Crielaard W, et al.: Antimicrobial photodynamic therapy–what we know and what we don’t. Crit Rev Microbiol. 2018; 44: 571. | spa |
dcterms.bibliographicCitation | 76. Pummer A, Knüttel H, Hiller K, et al.: Antimicrobial efficacy of irradiation with visible light on oral bacteria in vitro: a systematic review. Future Med Chem. 2017; 9: 1557. | spa |
dcterms.bibliographicCitation | 77. Ribeiro A, Andrade M, Bagnato V, et al.: Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions. Lasers Med Sci. 2015; 30: 549 | spa |
dcterms.bibliographicCitation | 78. Song D, Lindoso J, Oyafuso L, et al.: Photodynamic Therapy Using Methylene Blue to Treat Cutaneous Leishmaniasis. Photomed Laser Surg. 2011; 29: 711 | spa |
dcterms.bibliographicCitation | 79. Espitia-Almeida F: Complementary material. Mendeley Data. 2021: V1. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.5256/f1000research.78968.r99462 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Photodynamic therapy, porphyrin, Leishmania panamensis, Photophysical study, in vitro, porphyrinato | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.sede | Sede Norte | spa |