Mostrar el registro sencillo del ítem

dc.contributor.authorChacon, Hernan
dc.contributor.otherCano, Heidis
dc.contributor.otherHernández Fernández, Joaquin
dc.contributor.otherGuerra, Yoleima
dc.contributor.otherPuello Polo, Esneyder
dc.contributor.otherRíos Rojas, John Fredy
dc.contributor.otherRuiz, Yolima
dc.date.accessioned2022-11-15T19:25:16Z
dc.date.available2022-11-15T19:25:16Z
dc.date.issued2022-04-26
dc.date.submitted2022-02-22
dc.identifier.citationChacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. https:// doi.org/10.3390/polym14091753spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/809
dc.description.abstractThe addition of polymers in construction is a new tendency and an important step toward the production of structures with better functional properties. This work investigates the addition of polyurea (PU) as a polymeric material in mortars. Polymer mortars were manufactured with the addition of polyurea retained in different sieves (T50 and T100) and different concentrations (2% and 5%). The characterization of the, polyurea (PU)control mortar (PU0%) and manufactured polyurea mortars (PU2%T50, PU5%T50, PU2%T100, and PU5%T100) was conducted by means of morphological analysis, SEM, XRF, TGA, and a compressive strength test of hydraulic mortars. The results show that mortars with polyurea retained in sieve 100 with a particle size of 150 m exhibit better thermal behavior and a greater resistance to compression with a concentration of 5% polyurea with respect to the other samples. The present work reveals that polyurea retained in sieve 100 can be considered as a polymeric additive for mortars, indicating that it could be a candidate for applications such as construction.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourcePolymersspa
dc.titleEffect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strengthspa
dcterms.bibliographicCitationWu, G.; Ji, C.; Wang, X.; Gao, F.; Zhao, C.; Liu, Y.; Yang, G. Blast response of clay brick masonry unit walls unreinforced and reinforced with polyurea elastomer. Def. Technol. 2021, 18, 643–662. [CrossRef]spa
dcterms.bibliographicCitationSivan, P.P.; Gajendran, C.; Praveen, A.; Mahendran, C. Earthquake preparedness of new masonry constructions at seismically exposed regions a data driven approach. Mater. Today Proc. 2021. [CrossRef]spa
dcterms.bibliographicCitationNSR-10 Titulo de Mampostería Structural. Available online: https://www.idrd.gov.co/sites/default/files/documentos/ Construcciones/4titulo-d-nsr-100.pdf (accessed on 15 December 2021).spa
dcterms.bibliographicCitationRodríguez Sierra, F.A. Uso de Polímeros en la Reducción de Patologías de Origen Químico en Estructuras de Concreto. Bachelor’s Thesis, Universidad Catolica de Colombia, Bogotá, Colombia, 2014.spa
dcterms.bibliographicCitationZhang, X.; Du, M.; Fang, H.; Shi, M.; Zhang, C.; Wang, F. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges. Constr. Build. Mater. 2021, 299, 124290. [CrossRef]spa
dcterms.bibliographicCitationAgavriloaie, L.; Oprea, S.; Barbuta, M.; Luca, F. Characterization of polymer concrete with epoxy polyurethane acryl matrix. Constr. Build. Mater. 2012, 37, 190–196. [CrossRef]spa
dcterms.bibliographicCitationHuang, H.; Pang, H.; Huang, J.; Zhao, H.; Liao, B. Synthesis and characterization of ground glass fiber reinforced polyurethanebased polymer concrete as a cementitious runway repair material. Constr. Build. Mater. 2020, 242, 117221. [CrossRef]spa
dcterms.bibliographicCitationWang, R.; Yao, L.;Wang, P. Mechanism analysis and effect of styrene-acrylate copolymer powder on cement hydrates. Constr. Build. Mater. 2013, 41, 538–544. [CrossRef]spa
dcterms.bibliographicCitationHussain, H.K.; Liu, G.W.; Yong, Y.W. Experimental study to investigate mechanical properties of new material polyurethanecement composite (PUC). Constr. Build. Mater. 2014, 50, 200–208. [CrossRef]spa
dcterms.bibliographicCitationDe Souza, M.H.; de Souza, R.A. Análise de argamassas de reparo compostas por copolímero vinílico, PVA e SBR. Rev. Alconpat 2019, 9, 277–287. [CrossRef]spa
dcterms.bibliographicCitationMaherzi,W.; Ennahal, I.; Benzerzour, M.; Mammindy-Pajany, Y.; Abriak, N.E. Study of the polymer mortar based on dredged sediments and epoxy resin: Effect of the sediments on the behavior of the polymer mortar. Powder Technol. 2020, 361, 968–982. [CrossRef]spa
dcterms.bibliographicCitationMahdi, F.; Khan, A.A.; Abbas, H. Physiochemical properties of polymer mortar composites using resins derived from postconsumer PET bottles. Cem. Concr. Compos. 2007, 29, 241–248. [CrossRef]spa
dcterms.bibliographicCitationValero Luna, J.C.; NarváezYepes, L.F. Análisis de Construcción y Sistemas de Impermeabilización de Cubiertas en el Laboratorio Nacional de la Dirección de Impuestos y Aduanas Nacionales. Bachelor’s Thesis, Universidad Catolica de Colombia, Bogotá, Colombia, 2018.spa
dcterms.bibliographicCitationVásquez Suarez, L.I.; Villadiego Cárcamo, N.C. Caracterización Mecánica y Química del Sistema Mortero-Poliurea. Bachelor’s Thesis, Universidad de la Costa, Barranquilla, Colombia, 2018.spa
dcterms.bibliographicCitationOsuská, L.; Hela, R. The Impact of Different Aggregate Types and Its Composition on Resulting Concrete Properties Representing the Water Impermeability Level of Concrete for the Construction of White Boxes. Civ. Eng. Archt. 2020, 8, 39–45. [CrossRef]spa
dcterms.bibliographicCitationCho, B.H.; Nam, B.H.; Seo, S.; Kim, J.; An, J.; Youn, H.Waterproofing performance of waterstop with adhesive bonding used at joints of underground concrete structures. Constr. Build. Mater. 2019, 221, 491–500. [CrossRef]spa
dcterms.bibliographicCitationHoja de Datos de Seguridad de EUCO QWIKJOINT 200. Available online: https://www.toxement.com.co/media/2966/hs-eucoqwikjoint- 200.pdf (accessed on 21 July 2021).spa
dcterms.bibliographicCitationEuco-Qwikjoint-200. Available online: https://www.toxement.com.co/media/2880/euco-qwikjoint-200.pdf (accessed on 19 August 2021).spa
dcterms.bibliographicCitationStandard Test Method for Particle-Size Analysis of Soils (Withdrawn 2016). Available online: https://www.astm.org/DATABASE. CART/WITHDRAWN/D422.htm (accessed on 28 September 2021).spa
dcterms.bibliographicCitationNTC121—Especificación de Desempeño Para Cemento Hidráulico. Available online: https://tienda.icontec.org/ (accessed on 18 August 2021).spa
dcterms.bibliographicCitationASTM C1157/C1157M-17 Standard Performance Specification for Hydraulic Cement. Available online: www.astm.org (accessed on 23 August 2021).spa
dcterms.bibliographicCitationFicha Técnica Cemento Tipo I. Available online: https://mnisaccp01.blob.core.windows.net/honduras/AF%20-%20Argos%20 Ficha%20teicnica%20Cemento%20Tipo%20I%20ultima%20version.pdf (accessed on 28 September 2021).spa
dcterms.bibliographicCitationASTM C109/C109M-21, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). Available online: http://www.astm.org/cgi-bin/resolver.cgi?C109C109M-21 (accessed on 28 September 2021).spa
dcterms.bibliographicCitationÁvila, Y.; Restrepo, S.; Jiménez, J.; Castillo, M.; Parody, A. Análisis comparativo de la concentración de óxidos presentes en el cemento portland y lodos de plantas de tratamiento de agua potable. Afinidad 2017, 75, 68–73.spa
dcterms.bibliographicCitationGiraldo, M.A. Evolución mineralógica del cemento Portland durante el proceso de hidratación. Dyna 2021, 73, 69–81.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef]spa
dcterms.bibliographicCitationPavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Patricia Arrieta, M. Films based on thermoplastic starch blended with pine resin derivatives for food packaging. Foods 2021, 10, 117. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationTrochez, J.J.; Torres Agredo, J.; Mejía de Gutiérrez, R. Study of hydration of cement pastes added with used catalytic cracking catalyst (FCC) from a colombian refinery. Rev. Fac. Ing. Univ. Antioq. 2010, 55, 26–34.spa
dcterms.bibliographicCitationGiraldo, M.A.; Tobón, J.I. Mineralogical evolution of Portland cement during hydration process. Dyna. 2006, 73, 69–81.spa
dcterms.bibliographicCitationGarcia-Lodeiro, I.; Goracci, G.; Dolado, J.S.; Blanco-Varela, M.T. Mineralogical and microstructural alterations in a portland cement paste after an accelerated decalcification process. Cem. Concr. Compos. 2021, 140, 106312. [CrossRef]spa
dcterms.bibliographicCitationNorma Técnica Colombiana NTC 321. Available online: https://tienda.icontec.org/gp-especificacion-de-desempeno-paracemento- hidraulico-ntc121-2021.html (accessed on 5 September 2021).spa
dcterms.bibliographicCitationAlberto, E.; Gómez, C.; Enrique, J.; Sastoque, P. Estudio Comparativo de las Características Físico-Mecánicas de Cuatro Cementos Comerciales Portland Tipo I. Bachelor’s Thesis, Universidad Militar Nueva Granada, Bogotá, Colombia, 2014.spa
dcterms.bibliographicCitationClemente, O.J.G.; Díaz, M.B.; Boadas, Z.D.V.M.; Carrera, J.M. Caracterización de las arenas y arcillas minerales de los depósitos de canal y planicie de inundación del río portuguesa, Venezuela. Investig. Geográficas Boletín Inst. Geogr. 2014, 2014, 18–32.spa
dcterms.bibliographicCitationAngelin, A.F.; Miranda, E.J.P., Jr.; dos Santos, J.M.C.; Lintz, R.C.C.; Gachet-Barbosa, L.A. Rubberized mortar: The influence of aggregate granulometry in mechanical resistances and acoustic behavior. Constr. Build. Mater. 2019, 200, 248–254. [CrossRef]spa
dcterms.bibliographicCitationLi, G.;Wang, Z.; Leung, C.K.; Tang, S.; Pan, J.; Huang,W.; Chen, E. Properties of rubberized concrete modified by using silane coupling agent and carboxylated SBR. J. Clean. Prod. 2016, 112, 797–807. [CrossRef]spa
dcterms.bibliographicCitationTraversa, L.P.; Iloro, F.; Benito, D.E. Determination by thermal test of CO2 absorbed by cement mortars. Cienc. Tecnol. 2013, 3, 333–341.spa
dcterms.bibliographicCitationBarbadillo Jove, F. Estudio Cinético de Degradación Térmica de Poliuretanos Mediante Análisis Termogravimétrico (TGA). Ph.D. Thesis, Universidad da Coruña, Galicia, Spain, 2015.spa
dcterms.bibliographicCitationWon-In, K.; Boonruang, C.; Dararutana, P. Characterization of polyurea elastomer used for blast mitigation. AIP Conf. Proc. 2020, 2279, 070003.spa
dcterms.bibliographicCitationAte¸s, E. Optimization of Compression Strength by Granulometry and Change of Binder Rates in Epoxy and Polyester Resin Concrete. J. Reinf. Plast. Compos. 2009, 28, 235–246. [CrossRef]spa
dcterms.bibliographicCitationCarrión, F.; Montalbán, L.; Real, J.I.; Real, T. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers. Sci. World J. 2014, 2014, 526346. [CrossRef] [PubMed]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/polym14091753
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85129924096&doi=10.3390%2fpolym14091753&partnerID=40&md5=8319d93ca289637113407f6cfb6cf4e0
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsmortarspa
dc.subject.keywordspolyureaspa
dc.subject.keywordscharacterizationspa
dc.subject.keywordsconstructionspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineLicenciatura en Ciencias Naturalesspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por