Show simple item record

dc.contributor.authorPalomino, Kevin
dc.contributor.otherGarcia, David
dc.contributor.otherBerdugo, Carmen
dc.date.accessioned2022-11-15T19:25:05Z
dc.date.available2022-11-15T19:25:05Z
dc.date.issued2021-10-13
dc.date.submitted2020-01-27
dc.identifier.urihttps://hdl.handle.net/20.500.12834/808
dc.description.abstractIn this article, a facility location model was designed to support logistics operations, considering service distance limitations for demand fulfillment and a list of candidate locations within a supply chain. Consequently, an allocation model was designed using Mixed-Integer Linear Programming (MILP), in which a finite number of demand nodes could be satisfied by a set of supply nodes, considering not only the costs related to these locations, but also restrictions aimed at improving the level of service based on distance. Besides, an integrated solution scheme was proposed that includes a macro in VBA language that calculates the distance between nodes using the web mapping service developed by Google Maps and solving the model through a branch and cut algorithm. Subsequently, a case study was executed, where the supply operation of an important Colombian retail company is analyzed. The results reflected positive effects not only on costs, but also on the prioritization of average distance traveled and on the satisfaction of store demand by distribution centers. Thus, the conditions in which the implementation of this model provides strategic benefits were verified, functioning as a tool to support decision making.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceJournal of Engineering Researchspa
dc.titleA MILP facility location model with distance value adjustments for demand fulfillment using Google Mapsspa
dcterms.bibliographicCitationAfify, B. et al. 2019. Evolutionary learning algorithm for reliable facility location under disruption. Expert Systems with Applications 115: p.223–244.spa
dcterms.bibliographicCitationBiajoli, F.L., Chaves, A.A., & Lorena, L.A.N. 2019. A biased random-key genetic algorithm for the two-stage capacitated facility location problem. Expert Systems with Applications 115: p.418–426.spa
dcterms.bibliographicCitationBoujelben, M.K., Gicquel, C., & Minoux, M. 2016. A MILP model and heuristic approach for facility location under multiple operational constraints. Computers & Industrial Engineering 98: p.446–461.spa
dcterms.bibliographicCitationBranson, S. et al. 2018. From Google Maps to a fine-grained catalog of street trees. ISPRS Journal of Photogrammetry and Remote Sensing 135: p.13–30.spa
dcterms.bibliographicCitationCadarso, L., Codina, E., Escudero, L.F., & Marín, A. 2017. Rapid transit network design: Considering recovery robustness and risk aversion measures. Transportation Research Procedia 22: p.255–264.spa
dcterms.bibliographicCitationCatal, C., Fenerci, A., Ozdemir, B., & Gulmez, O. 2015. Improvement of Demand Forecasting Models with Special Days. Procedia Computer Science 59: p.262–267.spa
dcterms.bibliographicCitationCedolin, M., Göker, N., Dogu, E., & Esra Albayrak, Y. 2018. Facility Location Selection Employing Fuzzy DEA and Fuzzy Goal Programming Techniques. In J. Kacprzyk, E. Szmidt, S. Zadrożny, K. T. Atanassov, & M. Krawczak (eds) Advances in Fuzzy Logic and Technology 2017, 466–476. Cham: Springer International Publishingspa
dcterms.bibliographicCitationChalupa, D., & Nielsen, P. 2019. A simple and robust Monte Carlo hybrid local search algorithm for the facility location problem. Engineering Optimization 51(5): p.832–845.spa
dcterms.bibliographicCitationChopra, S., & Meindl, P. 2016. Supply Chain Management: Strategy, Planning, and Operation. Chapter 1: Understanding the Supply Chain. Section 1.4 Decision phases in a supply chain 6th ed. Pearson Education (ed). USA.spa
dcterms.bibliographicCitationConiglio, S., Fliege, J., & Walton, R. 2017. Facility Location with Item Storage and Delivery. In A. Sforza & C. Sterle (eds) Optimization and Decision Science: Methodologies and Applications, 287–294. Cham: Springer International Publishingspa
dcterms.bibliographicCitationCorreia, I., & Melo, T. 2016. Multi-period capacitated facility location under delayed demand satisfaction. European Journal of Operational Research 255(3): p.729–746.spa
dcterms.bibliographicCitationCorreia, I., & Melo, T. 2017. A multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment. Computers & Industrial Engineering 110: p.307–321.spa
dcterms.bibliographicCitationCouncil of Supply Chain Management Professionals (CSCMP). 2013. Supply chain management: Terms and Glossary. : p.222. Available at: https://cscmp.org/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms/CSCMP/Educate/.spa
dcterms.bibliographicCitationDing, L., & Zhang, N. 2016. A Travel Mode Choice Model Using Individual Grouping Based on Cluster Analysis. Procedia Engineering 137: p.786–795.spa
dcterms.bibliographicCitationDrezner, T., Drezner, Z., & Schöbel, A. 2018. The Weber obnoxious facility location model: A Big Arc Small Arc approach. Computers & Operations Research 98: p.240–250.spa
dcterms.bibliographicCitationDu, B., Zhou, H., & Leus, R. 2020. A two-stage robust model for a reliable p-center facility location problem. Applied Mathematical Modelling 77: p.99–114.spa
dcterms.bibliographicCitationEmirhüseyinoğlu, G., & Ekici, A. 2019. Dynamic facility location with supplier selection under quantity discount. Computers & Industrial Engineering 134: p.64–74.spa
dcterms.bibliographicCitationFarahani, R.Z., Fallah, S., Ruiz, R., Hosseini, S., & Asgari, N. 2019. OR models in urban service facility location: A critical review of applications and future developments. European Journal of Operational Research 276(1): p.1–27.spa
dcterms.bibliographicCitationGolpîra, H. 2020. Optimal integration of the facility location problem into the multi-project multi-supplier multiresource Construction Supply Chain network design under the vendor managed inventory strategy. Expert Systems with Applications 139: p.112841.spa
dcterms.bibliographicCitationGoogle LLC. 2017a. Distance Matrix API: Developer Guide. Google Maps Platform. Available at: https://developers.google.com/maps/documentation/distance-matrix/intro [Accessed January 10, 2017].spa
dcterms.bibliographicCitationGoogle LLC. 2017b. Google Maps Platform. Google Cloud. Available at: https://cloud.google.com/mapsplatform/ maps/ [Accessed January 10, 2017].spa
dcterms.bibliographicCitationGuo, P., Cheng, W., & Wang, Y. 2017. Hybrid evolutionary algorithm with extreme machine learning fitness function evaluation for two-stage capacitated facility location problems. Expert Systems with Applications 71: p.57–68.spa
dcterms.bibliographicCitationHajipour, V., Fattahi, P., Tavana, M., & Caprio, D. Di. 2016. Multi-objective multi-layer congested facility location-allocation problem optimization with Pareto-based meta-heuristics. Applied Mathematical Modelling 40(7): p.4948–4969.spa
dcterms.bibliographicCitationJakubovskis, A. 2017. Strategic facility location, capacity acquisition, and technology choice decisions under demand uncertainty: Robust vs. non-robust optimization approaches. European Journal of Operational Research 260(3): p.1095–1104.spa
dcterms.bibliographicCitationKaratas, M. 2017. A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover. European Journal of Operational Research 262(3): p.1040–1051.spa
dcterms.bibliographicCitationKaratas, M., & Yakıcı, E. 2018. An iterative solution approach to a multi-objective facility location problem. Applied Soft Computing 62: p.272–287.spa
dcterms.bibliographicCitationKhosravi, S., & Jokar, M.R.A. 2017. Facility and hub location model based on gravity rule. Computers & Industrial Engineering 109: p.28–38.spa
dcterms.bibliographicCitationKınay, Ö.B., Saldanha-da-Gama, F., & Kara, B.Y. 2019. On multi-criteria chance-constrained capacitated single-source discrete facility location problems. Omega 83: p.107–122.spa
dcterms.bibliographicCitationKumarage, S. 2018. Use of Crowdsourced Travel Time Data in Traffic Engineering Applications. University of Moratuwa.spa
dcterms.bibliographicCitationLand, A.H., & Doig, A.G. 1960. An Automatic Method of Solving Discrete Programming Problems. Econometrica 28(3): p.497–520.spa
dcterms.bibliographicCitationLin, Y. et al. 2018. An improved artificial bee colony for facility location allocation problem of end-of-life vehicles recovery network. Journal of Cleaner Production 205: p.134–144.spa
dcterms.bibliographicCitationManthey, B., & Tijink, M.B. 2018. Perturbation resilience for the facility location problem. Operations Research Letters 46(2): p.215–218.spa
dcterms.bibliographicCitationMei, L., Li, M., Ye, D., & Zhang, G. 2019. Facility location games with distinct desires. Discrete Applied Mathematics 264: p.148–160.spa
dcterms.bibliographicCitationNasiri, M.M., Mahmoodian, V., Rahbari, A., & Farahmand, S. 2018. A modified genetic algorithm for the capacitated competitive facility location problem with the partial demand satisfaction. Computers & Industrial Engineering 124: p.435–448.spa
dcterms.bibliographicCitationOrjuela-Castro, J.A., Sanabria-Coronado, L.A., & Peralta-Lozano, A.M. 2017. Coupling facility location models in the supply chain of perishable fruits. Research in Transportation Business & Management 24: p.73–80.spa
dcterms.bibliographicCitationPusponegoro, N.H., Rachmawati, R.N., Notodiputro, K.A., & Sartono, B. 2017. Linear Mixed Model for Analyzing Longitudinal Data: A Simulation Study of Children Growth Differences. Procedia Computer Science 116: p.284–291.spa
dcterms.bibliographicCitationQi, M., Xia, M., Zhang, Y., & Miao, L. 2017. Competitive facility location problem with foresight considering service distance limitations. Computers & Industrial Engineering 112: p.483–491.spa
dcterms.bibliographicCitationRachmawati, R.N., & Pusponegoro, N.H. 2017. Hierarchical Linear Mixed Model for Poverty Analysis in Indonesia. Procedia Computer Science 116: p.182–189.spa
dcterms.bibliographicCitationRohaninejad, M., Navidi, H., Nouri, B.V., & Kamranrad, R. 2017. A new approach to cooperative competition in facility location problems: Mathematical formulations and an approximation algorithm. Computers & Operations Research 83: p.45–53.spa
dcterms.bibliographicCitationSAS Institute Inc. 2014. SAS/OR® 13.2 User’s Guide: Mathematical Programming - The OPTMODEL Procedure. North Carolina, USA.spa
dcterms.bibliographicCitationSAS Institute Inc. 2018. SAS/OR(R) 14.1 User’s Guide: Mathematical Programming - The Mixed Integer Linear Programming Solver. Available at: http://support.sas.com/documentation/cdl/en/ormpug/68156/HTML/default/viewer.htm#ormpug_milpsolver _overview.htm [Accessed January 10, 2018].spa
dcterms.bibliographicCitationSauvey, C., Melo, T., & Correia, I. 2019. Heuristics for a multi-period facility location problem with delayed demand satisfaction. Computers & Industrial Engineering: p.106171.spa
dcterms.bibliographicCitationSemeida, A.M. 2014. Derivation of travel demand forecasting models for low population areas: the case of Port Said Governorate, North East Egypt. Journal of Traffic and Transportation Engineering (English Edition) 1(3): p.196–208.spa
dcterms.bibliographicCitationTadros, S.A., Galal, N.M., Ghazy, M., & ElSayed, A.E. 2018. A multi-objective two echelon capacitated facility location problem. In 2018 7th International Conference on Industrial Technology and Management (ICITM), 260–264.spa
dcterms.bibliographicCitationTeye, C., Bell, M.G.H., & Bliemer, M.C.J. 2017. Urban intermodal terminals: The entropy maximising facility location problem. Transportation Research Part B: Methodological 100: p.64–81.spa
dcterms.bibliographicCitationWang, Wei, Wang, Wanmei, Mosley, T.H., & Griswold, M.E. 2017. A SAS macro for the joint modeling of longitudinal outcomes and multiple competing risk dropouts. Computer Methods and Programs in Biomedicine 138: p.23–30.spa
dcterms.bibliographicCitationYang, S.Y., & Hsu, C.L. 2016. A location-based services and Google maps-based information master system for tour guiding. Computers and Electrical Engineering 54: p.87–105.spa
dcterms.bibliographicCitationYang, Z., Chen, H., Chu, F., & Wang, N. 2019. An effective hybrid approach to the two-stage capacitated facility location problem. European Journal of Operational Research 275(2): p.467–480.spa
dcterms.bibliographicCitationYu, G., Haskell, W.B., & Liu, Y. 2017. Resilient facility location against the risk of disruptions. Transportation Research Part B: Methodological 104: p.82–105.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.36909/jer.10473
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85131575059&doi=10.36909%2fjer.10473&partnerID=40&md5=b012d0960da0bdc95dc52eb31826ff3e
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsFacility locationspa
dc.subject.keywordsLogistics engineeringspa
dc.subject.keywordsMILPspa
dc.subject.keywordsSupply chain managementspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Industrialspa
dc.publisher.sedeSede Nortespa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por