Mostrar el registro sencillo del ítem

dc.contributor.authorCastro, Jorge Iván
dc.contributor.otherValencia Llano, Carlos Humberto
dc.contributor.otherLópez Tenorio, Diego
dc.contributor.otherSaavedra, Marcela
dc.contributor.otherZapata, Paula
dc.contributor.otherNavia Porras, Diana Paola
dc.contributor.otherDelgado Ospina, Johannes
dc.contributor.otherN. Chaur, Manuel
dc.contributor.otherMina Hernández, José Hermínsul
dc.contributor.otherGrande Tovar, Carlos David
dc.date.accessioned2022-11-15T19:24:53Z
dc.date.available2022-11-15T19:24:53Z
dc.date.issued2022-06-06
dc.date.submitted2022-03-17
dc.identifier.citationCastro, J.I.; Valencia Llano, C.H.; Tenorio, D.L.; Saavedra, M.; Zapata, P.; Navia-Porras, D.P.; Delgado-Ospina, J.; Chaur, M.N.; Hernández, J.H.M.; Grande-Tovar, C.D. Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications. Molecules 2022, 27, 3640. https://doi.org/10.3390/ molecules27113640spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/807
dc.description.abstractScaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol–gel methodology with a size of ca. 24.87 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 0.44 to 2.85 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 C to 63 C. In addition, the n-BGs increased the thermal stability due to the nanoparticle’s intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceMoleculesspa
dc.titleBiocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applicationsspa
dcterms.bibliographicCitationChristy, P.N.; Basha, S.K.; Kumari, V.S.; Bashir, A.K.H.; Maaza, M.; Kaviyarasu, K.; Arasu, M.V.; Al-Dhabi, N.A.; Ignacimuthu, S. Biopolymeric Nanocomposite Scaffolds for Bone Tissue Engineering Applications—A Review. J. Drug Deliv. Sci. Technol. 2020, 55, 101452. [CrossRef]spa
dcterms.bibliographicCitationKanimozhi, K.; KhaleelBasha, S.; SuganthaKumari, V.; Kaviyarasu, K. Development and Characterization of Sodium Alginate/ Poly (Vinyl Alcohol) Blend Scaffold with Ciprofloxacin Loaded in Controlled Drug Delivery System. J. Nanosci. Nanotechnol. 2019, 19, 2493–2500. [CrossRef]spa
dcterms.bibliographicCitationMalik, S.; Sundarrajan, S.; Hussain, T. Sustainable Nanofibers in Tissue Engineering and Biomedical Applications. Mater. Des. Processing Commun. 2021, 3(6), 1–22. [CrossRef]spa
dcterms.bibliographicCitationArmentano, I.; Bitinis, N.; Fortunati, E.; Mattioli, S.; Rescignano, N.; Verdejo, R.; Lopez-Manchado, M.A.; Kenny, J.M. Multifunctional Nanostructured PLA Materials for Packaging and Tissue Engineering. Prog. Polym. Sci. 2013, 38, 1720–1747. [CrossRef]spa
dcterms.bibliographicCitationCanales, D.; Saavedra, M.; Flores, M.T.; Bejarano, J.; Ortiz, J.A.; Orihuela, P.; Alfaro, A.; Pabón, E.; Palza, H.; Zapata, P.A. Effect of Bioglass Nanoparticles on the Properties and Bioactivity of Poly (Lactic Acid) Films. J. Biomed. Mater. Res.-Part A 2020, 108, 2032–2043. [CrossRef]spa
dcterms.bibliographicCitationXie, X.; Chen, Y.; Wang, X.; Xu, X.; Shen, Y.; Aldalbahi, A.; Fetz, A.E.; Bowlin, G.L.; El-Newehy, M.; Mo, X. Electrospinning Nanofiber Scaffolds for Soft and Hard Tissue Regeneration. J. Mater. Sci. Technol. 2020, 59, 243–261. [CrossRef]spa
dcterms.bibliographicCitationBoccaccini, A.R.; Erol, M.; Stark,W.J.; Mohn, D.; Hong, Z.; Mano, J.F. Polymer/Bioactive Glass Nanocomposites for Biomedical Applications: A Review. Compos. Sci. Technol. 2010, 70, 1764–1776. [CrossRef]spa
dcterms.bibliographicCitationGarcía-Martínez, V.; Gude, M.R.; Calvo, S.; Ureña, A. Efecto de La Adición de Nanoláminas de Grafeno En Las Propiedades de Laminados de Fibra de Carbono y Benzoxacina. Mater. Compuestos 2019, 3, 6–9.spa
dcterms.bibliographicCitationWahid, F.; Khan, T.; Hussain, Z.; Ullah, H. Nanocomposite Scaffolds for Tissue Engineering; Properties, Preparation and Applications. In Applications of Nanocomposite Materials in Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 701–735.spa
dcterms.bibliographicCitationConoscenti, G.; Carfì Pavia, F.; Ciraldo, F.E.; Liverani, L.; Brucato, V.; La Carrubba, V.; Boccaccini, A.R. In Vitro Degradation and Bioactivity of Composite Poly-l-Lactic (PLLA)/Bioactive Glass (BG) Scaffolds: Comparison of 45S5 and 1393BG Compositions. J. Mater. Sci. 2018, 53, 2362–2374. [CrossRef]spa
dcterms.bibliographicCitationDay, R.M.; Boccaccini, A.R.; Shurey, S.; Roether, J.A.; Forbes, A.; Hench, L.L.; Gabe, S.M. Assessment of Polyglycolic Acid Mesh and Bioactive Glass for Soft-Tissue Engineering Scaffolds. Biomaterials 2004, 25, 5857–5866. [CrossRef]spa
dcterms.bibliographicCitationDurgalakshmi, D.; Balakumar, S. Analysis of Solvent Induced Porous PMMA–Bioglass Monoliths by the Phase Separation Method–Mechanical and in Vitro Biocompatible Studies. Phys. Chem. Chem. Phys. 2015, 17, 1247–1256. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationMontazerian, M.; Dutra Zanotto, E. History and Trends of Bioactive Glass-ceramics. J. Biomed. Mater. Res. Part A 2016, 104, 1231–1249. [CrossRef]spa
dcterms.bibliographicCitationBellucci, D.; Chiellini, F.; Ciardelli, G.; Gazzarri, M.; Gentile, P.; Sola, A.; Cannillo, V. Processing and Characterization of Innovative Scaffolds for Bone Tissue Engineering. J. Mater. Sci. Mater. Med. 2012, 23, 1397–1409. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationBi, L.; Jung, S.; Day, D.; Neidig, K.; Dusevich, V.; Eick, D.; Bonewald, L. Evaluation of Bone Regeneration, Angiogenesis, and Hydroxyapatite Conversion in Critical-sized Rat Calvarial Defects Implanted with Bioactive Glass Scaffolds. J. Biomed. Mater. Res. Part A 2012, 100, 3267–3275. [CrossRef]spa
dcterms.bibliographicCitationRahaman, M.N.; Day, D.E.; Bal, B.S.; Fu, Q.; Jung, S.B.; Bonewald, L.F.; Tomsia, A.P. Bioactive Glass in Tissue Engineering. Acta Biomater. 2011, 7, 2355–2373. [CrossRef]spa
dcterms.bibliographicCitationHench, L.L. Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [CrossRef]spa
dcterms.bibliographicCitationHench, L.L.; Polak, J.M. Third-Generation Biomedical Materials. Science 2002, 295, 1014–1017. [CrossRef]spa
dcterms.bibliographicCitationFilho, O.P.; La Torre, G.P.; Hench, L.L. Effect of Crystallization on Apatite-layer Formation of Bioactive Glass 45S5. J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Jpn. Soc. Biomater. 1996, 30, 509–514. [CrossRef]spa
dcterms.bibliographicCitationClupper, D.C.; Hench, L.L. Crystallization Kinetics of Tape Cast Bioactive Glass 45S5. J. Non-Cryst. Solids 2003, 318, 43–48. [CrossRef]spa
dcterms.bibliographicCitationLi, P.; Yang, Q.; Zhang, F.; Kokubo, T. The Effect of Residual Glassy Phase in a Bioactive Glass-Ceramic on the Formation of Its Surface Apatite Layerin Vitro. J. Mater. Sci. Mater. Med. 1992, 3, 452–456. [CrossRef]spa
dcterms.bibliographicCitationVert, M.; Li, S.M.; Spenlehauer, G.; Guérin, P. Bioresorbability and Biocompatibility of Aliphatic Polyesters. J. Mater. Sci. Mater. Med. 1992, 3, 432–446. [CrossRef]spa
dcterms.bibliographicCitationWu, F.; Wei, J.; Liu, C.; O’Neill, B.; Ngothai, Y. Fabrication and Properties of Porous Scaffold of Zein/PCL Biocomposite for Bone Tissue Engineering. Compos. Part B Eng. 2012, 43, 2192–2197. [CrossRef]spa
dcterms.bibliographicCitationChen, Y.; Mak, A.F.T.; Wang, M.; Li, J.; Wong, M.S. PLLA Scaffolds with Biomimetic Apatite Coating and Biomimetic Apatite/ Collagen Composite Coating to Enhance Osteoblast-like Cells Attachment and Activity. Surf. Coat. Technol. 2006, 201, 575–580. [CrossRef]spa
dcterms.bibliographicCitationHong, Z.; Reis, R.L.; Mano, J.F. Preparation and in Vitro Characterization of Scaffolds of Poly(l-Lactic Acid) Containing Bioactive Glass Ceramic Nanoparticles. Acta Biomater. 2008, 4, 1297–1306. [CrossRef]spa
dcterms.bibliographicCitationLin, C.C.; Huang, L.C.; Shen, P. Na2CaSi2O6-P2O5 Based Bioactive Glasses. Part 1: Elasticity and Structure. J. Non-Cryst. Solids 2005, 351, 3195–3203. [CrossRef]spa
dcterms.bibliographicCitationBoccaccini, A.R.; Chen, Q.; Lefebvre, L. Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass– ceramics. Faraday Discuss. 2007, 136, 27–44. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationGlass, B.; Engineering, T.; Ranga, N.; Gahlyan, S.; Duhan, S. Antibacterial Efficiency of Zn, Mg and Sr Doped Bioactive Glass for Bone Tissue Engineering. J. Nanosci. Nanotechnol. 2020, 20, 2465–2472. [CrossRef]spa
dcterms.bibliographicCitationKrikorian, V.; Pochan, D.J. Crystallization Behavior of Poly(L-Lactic Acid) Nanocomposites: Nucleation and Growth Probed by Infrared Spectroscopy. Macromolecules 2005, 38, 6520–6527. [CrossRef]spa
dcterms.bibliographicCitationBlaker, J.J.; Nazhat, S.N.; Maquet, V.; Boccaccini, A.R. Long-Term in Vitro Degradation of PDLLA/Bioglass® Bone Scaffolds in Acellular Simulated Body Fluid. Acta Biomater. 2011, 7, 829–840. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationFan, Y.; Nishida, H.; Hoshihara, S.; Shirai, Y.; Tokiwa, Y.; Endo, T. Pyrolysis Kinetics of Poly (L-Lactide) with Carboxyl and Calcium Salt End Structures. Polym. Degrad. Stab. 2003, 79, 547–562. [CrossRef]spa
dcterms.bibliographicCitationMao, D.; Li, Q.; Li, D.; Chen, Y.; Chen, X.; Xu, X. Fabrication of 3D Porous Poly (Lactic Acid)-Based Composite Scaffolds with Tunable Biodegradation for Bone Tissue Engineering. Mater. Des. 2018, 142, 1–10. [CrossRef]spa
dcterms.bibliographicCitationSchick, C. Differential Scanning Calorimetry (DSC) of Semicrystalline Polymers. Anal. Bioanal. Chem. 2009, 395, 1589–1611. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLoyo, C.; Moreno-Serna, V.; Fuentes, J.; Amigo, N.; Sepúlveda, F.A.; Ortiz, J.A.; Rivas, L.M.; Ulloa, M.T.; Benavente, R.; Zapata, P.A. PLA/CaO Nanocomposites with Antimicrobial and Photodegradation Properties. Polym. Degrad. Stab. 2022, 197, 109865. [CrossRef]spa
dcterms.bibliographicCitationEpp, J. X-ray Diffraction (XRD) Techniques for Materials Characterization; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081000571.spa
dcterms.bibliographicCitationLefebvre, L.; Gremillard, L.; Chevalier, J.; Zenati, R.; Bernache-Assolant, D. Sintering Behaviour of 45S5 Bioactive Glass. Acta Biomater. 2008, 4, 1894–1903. [CrossRef]spa
dcterms.bibliographicCitationRose, A.S.J.L.; Selvarajan, P.; Perumal, S. Growth, Structural, Spectral, Mechanical, Thermal and Dielectric Characterization of Phosphoric Acid Admixtured l-Alanine (PLA) Single Crystals. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2011, 81, 270–275. [CrossRef]spa
dcterms.bibliographicCitationChen, Q.Z.; Thompson, I.D.; Boccaccini, A.R. 45S5 Bioglass®-Derived Glass–Ceramic Scaffolds for Bone Tissue Engineering. Biomaterials 2006, 27, 2414–2425. [CrossRef]spa
dcterms.bibliographicCitationSchwartz, Z.; Boyan, B.D. Underlying Mechanisms at the Bone–Biomaterial Interface. J. Cell. Biochem. 1994, 56, 340–347. [CrossRef]spa
dcterms.bibliographicCitationTu, C.; Cai, Q.; Yang, J.;Wan, Y.; Bei, J.;Wang, S. The Fabrication and Characterization of Poly (Lactic Acid) Scaffolds for Tissue Engineering by Improved Solid–Liquid Phase Separation. Polym. Adv. Technol. 2003, 14, 565–573. [CrossRef]spa
dcterms.bibliographicCitationAdams, L.K.; Lyon, D.Y.; Alvarez, P.J.J. Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnOWater Suspensions. Water Res. 2006, 40, 3527–3532. [CrossRef]spa
dcterms.bibliographicCitationKhezerlou, A.; Alizadeh-Sani, M.; Azizi-Lalabadi, M.; Ehsani, A. Nanoparticles and Their Antimicrobial Properties against Pathogens Including Bacteria, Fungi, Parasites and Viruses. Microb. Pathog. 2018, 123, 505–526. [CrossRef]spa
dcterms.bibliographicCitationStockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium Salts and Formazan Products in Cell Biology: Viability Assessment, Fluorescence Imaging, and Labeling Perspectives. Acta Histochem. 2018, 120, 159–167. [CrossRef]spa
dcterms.bibliographicCitationPossolli, N.M.; Da Silva, D.F.; Vieira, J.; Maurmann, N.; Pranke, P.; Demétrio, K.B.; Angioletto, E.; Montedo, O.R.K.; Arcaro, S. Dissolution, bioactivity behavior, and cytotoxicity of 19. 58Li2O 11. 10ZrO2 69. 32SiO2 glass–ceramic. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 67–78. [CrossRef]spa
dcterms.bibliographicCitationAtkinson, I.; Anghel, E.M.; Petrescu, S.; Seciu, A.M.; Stefan, L.M.; Mocioiu, O.C.; Predoana, L.; Voicescu, M.; Somacescu, S.; Culita, D. Cerium-Containing Mesoporous Bioactive Glasses: Material Characterization, in Vitro Bioactivity, Biocompatibility and Cytotoxicity Evaluation. Microporous Mesoporous Mater. 2019, 276, 76–88. [CrossRef]spa
dcterms.bibliographicCitationSpirandeli, B.R.; Ribas, R.G.; Amaral, S.S.; Martins, E.F.; Esposito, E.; Vasconcellos, L.M.R.; Campos, T.M.B.; Thim, G.P.; Trichês, E.S. Incorporation of 45S5 Bioglass via Sol-Gel in -TCP Scaffolds: Bioactivity and Antimicrobial Activity Evaluation. Mater. Sci. Eng. C 2021, 131, 112453. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSantoro, M.; Shah, S.R.; Walker, J.L.; Mikos, A.G. Poly (Lactic Acid) Nanofibrous Scaffolds for Tissue Engineering. Adv. Drug Deliv. Rev. 2016, 107, 206–212. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationDiomede, F.; Gugliandolo, A.; Cardelli, P.; Merciaro, I.; Ettorre, V.; Traini, T.; Bedini, R.; Scionti, D.; Bramanti, A.; Nanci, A. Three-Dimensional Printed PLA Scaffold and Human Gingival Stem Cell-Derived Extracellular Vesicles: A New Tool for Bone Defect Repair. Stem Cell Res. Ther. 2018, 9, 1–21. [CrossRef]spa
dcterms.bibliographicCitationGritsch, L.; Perrin, E.; Chenal, J.-M.; Fredholm, Y.; Maçon, A.L.; Chevalier, J.; Boccaccini, A.R. Combining Bioresorbable Polyesters and Bioactive Glasses: Orthopedic Applications of Composite Implants and Bone Tissue Engineering Scaffolds. Appl. Mater. Today 2021, 22, 100923. [CrossRef]spa
dcterms.bibliographicCitationBahremandi-Toloue, E.; Mohammadalizadeh, Z.; Mukherjee, S.; Karbasi, S. Incorporation of Inorganic Bioceramics into Electrospun Scaffolds for Tissue Engineering Applications: A Review. Ceram. Int. 2021, 48(9), 8803–8837. [CrossRef]spa
dcterms.bibliographicCitationRahmati, M.; Mozafari, M. Selective Contribution of Bioactive Glasses to Molecular and Cellular Pathways. ACS Biomater. Sci. Eng. 2019, 6, 4–20. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSui, H.;Wang, F.;Weng, Z.; Song, H.; Fang, Y.; Tang, X.; Shen, X. A Wheat Germ-Derived Peptide YDWPGGRN Facilitates Skin Wound-Healing Processes. Biochem. Biophys. Res. Commun. 2020, 524, 943–950. [CrossRef]spa
dcterms.bibliographicCitationSheikh, Z.; Brooks, P.J.; Barzilay, O.; Fine, N.; Glogauer, M. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials 2015, 8, 5671–5701. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSharabi, M. Structural Mechanisms in Soft Fibrous Tissues: A Review. Front. Mater. 2022, 8, 793647. [CrossRef]spa
dcterms.bibliographicCitationKapogianni, E.; Alkildani, S.; Radenkovic, M.; Xiong, X.; Krastev, R.; Stöwe, I.; Bielenstein, J.; Jung, O.; Najman, S.; Barbeck, M. The Early Fragmentation of a Bovine Dermis-Derived Collagen Barrier Membrane Contributes to Transmembraneous Vascularization—A Possible Paradigm Shift for Guided Bone Regeneration. Membranes 2021, 11, 185. [CrossRef]spa
dcterms.bibliographicCitationKwee, B.J.; Mooney, D.J. Manipulating the Intersection of Angiogenesis and Inflammation. Ann. Biomed. Eng. 2015, 43, 628–640. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationOnuki, Y.; Bhardwaj, U.; Papadimitrakopoulos, F.; Burgess, D.J. A Review of the Biocompatibility of Implantable Devices: Current Challenges to Overcome Foreign Body Response. J. Diabetes Sci. Technol. 2008, 2, 1003–1015. [CrossRef]spa
dcterms.bibliographicCitationAlnojeidi, H.; Kilani, R.T.; Ghahary, A. Evaluating the Biocompatibility of an Injectable Wound Matrix in a Murine Model. Gels 2022, 8, 49. [CrossRef]spa
dcterms.bibliographicCitationAnderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008, 20, 86–100. [CrossRef]spa
dcterms.bibliographicCitationKlopfleisch, R.; Jung, F. The Pathology of the Foreign Body Reaction against Biomaterials. J. Biomed. Mater. Res. Part A 2017, 105, 927–940. [CrossRef]spa
dcterms.bibliographicCitationCarvalho, J.R.G.; Conde, G.; Antonioli, M.L.; Santana, C.H.; Littiere, T.O.; Dias, P.P.; Chinelatto, M.A.; Canola, P.A.; Zara, F.J.; Ferraz, G.C. Long-Term Evaluation of Poly (Lactic Acid)(PLA) Implants in a Horse: An Experimental Pilot Study. Molecules 2021, 26, 7224. [CrossRef]spa
dcterms.bibliographicCitationMaluf-Meiken, L.C.V.; Silva, D.R.M.; Duek, E.A.R.; Alberto-Rincon, M.C. Morphometrical Analysis of Multinucleated Giant Cells in Subdermal Implants of Poly-Lactic Acid in Rats. J. Mater. Sci. Mater. Med. 2006, 17, 481–485. [CrossRef]spa
dcterms.bibliographicCitationMinata, M.K.; Motta, A.C.; Barbo, M.D.L.P.; Rincon, M.D.C.A.; Duek, E.A. Estudo Da Biocompatibilidade Da Blenda de Poli (L-Ácido Láctico)/Policaprolactona-Triol. Polímeros 2013, 23, 242–247. [CrossRef]spa
dcterms.bibliographicCitationGueldenpfennig, T.; Houshmand, A.; Najman, S.; Stojanovic, S.; Korzinskas, T.; Smeets, R.; Gosau, M.; Pissarek, J.; Emmert, S.; Jung, O. The Condensation of Collagen Leads to an Extended Standing Time and a Decreased Pro-Inflammatory Tissue Response to a Newly Developed Pericardium-Based Barrier Membrane for Guided Bone Regeneration. In Vivo 2020, 34, 985–1000. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationFonseca, C.; Ochoa, A.; Ulloa, M.T.; Alvarez, E.; Canales, D.; Zapata, P.A. Poly (Lactic Acid)/TiO2 Nanocomposites as Alternative Biocidal and Antifungal Materials. Mater. Sci. Eng. C 2015, 57, 314–320. [CrossRef]spa
dcterms.bibliographicCitationShelembe, B.; Mahlangeni, N.; Moodley, R. Biosynthesis and Bioactivities of Metal Nanoparticles Mediated by Helichrysum Aureonitens. J. Anal. Sci. Technol. 2022, 13, 1–11. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/ molecules27113640
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsantimicrobialspa
dc.subject.keywordsbiocompatibilityspa
dc.subject.keywordscell viabilityspa
dc.subject.keywordshistologyspa
dc.subject.keywordsnanobioglassspa
dc.subject.keywordsnanocompositesspa
dc.subject.keywordspolylactic acidspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineQuímicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por